Skip to main content
Top
Published in: Journal of Applied and Industrial Mathematics 1/2023

01-03-2023

Parametric RANS Simulation of a Cavitation Flow in the Channel of a Control Valve Cage

Authors: E. I. Ivashchenko, V. A. Ivashchenko, I. A. Plokhikh, A. R. Mardanov, I. A. Melemchuk, N. K. Pimenov, R. I. Mullyadzhanov

Published in: Journal of Applied and Industrial Mathematics | Issue 1/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The cavitation flow in a channel that prototypes a control valve cage is studied. The average velocity, pressure, and vapor volume fraction fields obtained by the RANS method by means of the OpenFOAM open source CFD software are in good agreement with the data obtained with the Ansys Fluent proprietary CFD solver. A computer code is implemented permitting one to obtain a large number of configurations of the control valve cage geometry, for which RANS calculations are performed so as to compile a comprehensive database.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference M. Charlton, “Cost effective manufacturing and optimal design of X-stream trims for severe service control valves,” Doctoral (Math.) Dissertation, Univ. Huddersfield (2014). M. Charlton, “Cost effective manufacturing and optimal design of X-stream trims for severe service control valves,” Doctoral (Math.) Dissertation, Univ. Huddersfield (2014).
2.
go back to reference N. A. Wedzinga, “Design and testing of a 6 inch control valve with a multi-stage anti-cavitation trim,” Stud. Eng. Fluid Dyn. Univ. Twente (Twente Univ. Publ., Enschede, Overijssel, 2015). N. A. Wedzinga, “Design and testing of a 6 inch control valve with a multi-stage anti-cavitation trim,” Stud. Eng. Fluid Dyn. Univ. Twente (Twente Univ. Publ., Enschede, Overijssel, 2015).
3.
go back to reference T. Asim, M. Charlton, and R. Mishra, “CFD based investigations for the design of severe service control valves used in energy systems,” Energy Convers. Manage. 153, 288–303 (2017).CrossRef T. Asim, M. Charlton, and R. Mishra, “CFD based investigations for the design of severe service control valves used in energy systems,” Energy Convers. Manage. 153, 288–303 (2017).CrossRef
4.
go back to reference Z. X. Gao, Y. Yue, J. Y. Wu, J. Y. Li, H. Wu, and Z. J. Jin, “The flow and cavitation characteristics of cage-type control valves,” Eng. Appl. Comput. Fluid Mech. 15 (1), 951–963 (2021). Z. X. Gao, Y. Yue, J. Y. Wu, J. Y. Li, H. Wu, and Z. J. Jin, “The flow and cavitation characteristics of cage-type control valves,” Eng. Appl. Comput. Fluid Mech. 15 (1), 951–963 (2021).
6.
go back to reference J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Proximal policy optimization algorithms,” arXiv (2017). J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Proximal policy optimization algorithms,” arXiv (2017).
7.
go back to reference S. Fujimoto, H. van Hoof, and D. Meger, “Addressing function approximation error in actor-critic methods,” arXiv (2018). S. Fujimoto, H. van Hoof, and D. Meger, “Addressing function approximation error in actor-critic methods,” arXiv (2018).
9.
go back to reference M. Arabnejad, A. Amini, M. Farhat, and R. Bensow, “Numerical and experimental investigation of shedding mechanisms from leading-edge cavitation,” Int. J. Multiphase Flow 119, 123–143 (2019).MathSciNetCrossRef M. Arabnejad, A. Amini, M. Farhat, and R. Bensow, “Numerical and experimental investigation of shedding mechanisms from leading-edge cavitation,” Int. J. Multiphase Flow 119, 123–143 (2019).MathSciNetCrossRef
10.
go back to reference E. Ivashchenko, M. Hrebtov, M. Timoshevskiy, K. Pervunin, and R. Mullyadzhanov, “Systematic validation study of an unsteady cavitating flow over a hydrofoil using conditional averaging: LES and PIV,” J. Marine Sci. Eng. 9 (11), 1193 (2021).CrossRef E. Ivashchenko, M. Hrebtov, M. Timoshevskiy, K. Pervunin, and R. Mullyadzhanov, “Systematic validation study of an unsteady cavitating flow over a hydrofoil using conditional averaging: LES and PIV,” J. Marine Sci. Eng. 9 (11), 1193 (2021).CrossRef
11.
go back to reference G. H. Schnerr and J. Sauer, “Physical and numerical modeling of unsteady cavitation dynamics,” Proc. Fourth Int. Conf. Multiphase Flow (New Orleans, 2001), 1. G. H. Schnerr and J. Sauer, “Physical and numerical modeling of unsteady cavitation dynamics,” Proc. Fourth Int. Conf. Multiphase Flow (New Orleans, 2001), 1.
13.
go back to reference R. F. Warming and R. M. Beam, “Upwind second-order difference schemes and applications in aerodynamic flows,” AIAA J. 14 (9), 1241–1249 (1976).MathSciNetCrossRefMATH R. F. Warming and R. M. Beam, “Upwind second-order difference schemes and applications in aerodynamic flows,” AIAA J. 14 (9), 1241–1249 (1976).MathSciNetCrossRefMATH
14.
go back to reference H. Jasak, Error Analysis and Estimation for the Finite Volume Method with Applications to Fluid Flows (Univ. London, London, 1996). H. Jasak, Error Analysis and Estimation for the Finite Volume Method with Applications to Fluid Flows (Univ. London, London, 1996).
15.
go back to reference J. H. Ferziger, M. Perić, and R. L. Street, Computational Methods for Fluid Dynamics. Vol. 3 (Springer-Verlag, Berlin–Heidelberg, 2002), 196–200. J. H. Ferziger, M. Perić, and R. L. Street, Computational Methods for Fluid Dynamics. Vol. 3 (Springer-Verlag, Berlin–Heidelberg, 2002), 196–200.
16.
go back to reference M. Darwish and F. Moukalled, The Finite Volume Method in Computational Fluid Dynamics: An Advanced Introduction with OpenFOAM and Matlab (Springer-Verlag, Berlin–Heidelberg, 2021).MATH M. Darwish and F. Moukalled, The Finite Volume Method in Computational Fluid Dynamics: An Advanced Introduction with OpenFOAM and Matlab (Springer-Verlag, Berlin–Heidelberg, 2021).MATH
18.
go back to reference O. Rybdylova, M. Al Qubeissi, M. Braun, C. Crua, J. Manin, L. M. Pickett, G. De Sercey, E. M. Sazhina, S. S. Sazhin, and M. Heikal, “A model for droplet heating and its implementation into ANSYS Fluent,” Int. Commun. Heat Mass Transfer 76, 265–270 (2016).CrossRef O. Rybdylova, M. Al Qubeissi, M. Braun, C. Crua, J. Manin, L. M. Pickett, G. De Sercey, E. M. Sazhina, S. S. Sazhin, and M. Heikal, “A model for droplet heating and its implementation into ANSYS Fluent,” Int. Commun. Heat Mass Transfer 76, 265–270 (2016).CrossRef
19.
go back to reference D. Borkowski, M. Wȩgiel, P. Ocloń, and T. Wȩgiel, “CFD model and experimental verification of water turbine integrated with electrical generator,” Energy 185, 875–883 (2019). D. Borkowski, M. Wȩgiel, P. Ocloń, and T. Wȩgiel, “CFD model and experimental verification of water turbine integrated with electrical generator,” Energy 185, 875–883 (2019).
20.
go back to reference A. H. Araghi, M. Khiadani, M. H. Sadafi, and K. Hooman, “A numerical model and experimental verification for analysing a new vacuum spray flash desalinator utilising low grade energy,” Desalination 413, 109–118 (2017).CrossRef A. H. Araghi, M. Khiadani, M. H. Sadafi, and K. Hooman, “A numerical model and experimental verification for analysing a new vacuum spray flash desalinator utilising low grade energy,” Desalination 413, 109–118 (2017).CrossRef
21.
go back to reference N. Adhikari and A. Alexeenko, “Development and verification of nonequilibrium reacting airflow modeling in ANSYS Fluent,” J. Thermophys. Heat Transfer 36 (1), 118–128 (2022).CrossRef N. Adhikari and A. Alexeenko, “Development and verification of nonequilibrium reacting airflow modeling in ANSYS Fluent,” J. Thermophys. Heat Transfer 36 (1), 118–128 (2022).CrossRef
22.
go back to reference A. Kumar, A. Ghobadian, and J. Nouri, “Numerical simulation and experimental validation of cavitating flow in a multi-hole diesel fuel injector,” Int. J. Engine Res. 23 (6), 958–973 (2022).CrossRef A. Kumar, A. Ghobadian, and J. Nouri, “Numerical simulation and experimental validation of cavitating flow in a multi-hole diesel fuel injector,” Int. J. Engine Res. 23 (6), 958–973 (2022).CrossRef
23.
go back to reference Y. Long, L. F. Deng, J. Q. Zhang, B. Ji, and X. P. Long, “A new method of LES verification and validation for attached turbulent cavitating flow,” J. Hydrodyn. 33 (1), 170–174 (2021).CrossRef Y. Long, L. F. Deng, J. Q. Zhang, B. Ji, and X. P. Long, “A new method of LES verification and validation for attached turbulent cavitating flow,” J. Hydrodyn. 33 (1), 170–174 (2021).CrossRef
Metadata
Title
Parametric RANS Simulation of a Cavitation Flow in the Channel of a Control Valve Cage
Authors
E. I. Ivashchenko
V. A. Ivashchenko
I. A. Plokhikh
A. R. Mardanov
I. A. Melemchuk
N. K. Pimenov
R. I. Mullyadzhanov
Publication date
01-03-2023
Publisher
Pleiades Publishing
Published in
Journal of Applied and Industrial Mathematics / Issue 1/2023
Print ISSN: 1990-4789
Electronic ISSN: 1990-4797
DOI
https://doi.org/10.1134/S1990478923010106

Other articles of this Issue 1/2023

Journal of Applied and Industrial Mathematics 1/2023 Go to the issue

Premium Partners