Skip to main content
Top
Published in: Journal of Applied and Industrial Mathematics 1/2023

01-03-2023

Simulation of COVID-19 Spread Scenarios in the Republic of Kazakhstan Based on Regularization of the Agent-Based Model

Authors: O. I. Krivorotko, S. I. Kabanikhin, M. A. Bektemesov, M. I. Sosnovskaya, A. V. Neverov

Published in: Journal of Applied and Industrial Mathematics | Issue 1/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

We propose an algorithm for modeling scenarios for newly diagnosed cases of COVID-19 in the Republic of Kazakhstan. The algorithm is based on treating incomplete epidemiological data and solving the inverse problem of reconstructing the parameters of the agent-based model (ABM) using the set of available epidemiological data. The main tool for constructing the ABM is the Covasim open library. In the event of a drastic change in the situation (appearance of a new strain, removal or introduction of restrictive measures, etc.), the model parameters are updated taking into account additional information for the previous month (online data assimilation). The inverse problem is solved by stochastic global optimization (of tree-structured Parzen estimators). As an example, we give two scenarios of COVID-19 propagation calculated on December 12, 2021 for the period up to January 20, 2022. The scenario that took into account the New Year holidays (published on December 12, 2021 on http://​covid19-modeling.​ru ) almost coincided with what happened in reality (the error was 0.2%).

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference V. A. Adarchenko, S. A. Baban’, A. A. Bragin , et al., “Modeling the development of the coronavirus epidemic using differential and statistical models” (Snezhinsk, 2020), Preprint RFIATC-VNIITF, no. 264 [in Russian]. V. A. Adarchenko, S. A. Baban’, A. A. Bragin , et al., “Modeling the development of the coronavirus epidemic using differential and statistical models” (Snezhinsk, 2020), Preprint RFIATC-VNIITF, no. 264 [in Russian].
2.
go back to reference O. I. Krivorotko and S. I. Kabanikhin, “Mathematical models of the spread of COVID-19” (Novosibirsk, 2022), Preprint Inst. Mat. im. S.L. Soboleva, no. 300 [in Russian]. O. I. Krivorotko and S. I. Kabanikhin, “Mathematical models of the spread of COVID-19” (Novosibirsk, 2022), Preprint Inst. Mat. im. S.L. Soboleva, no. 300 [in Russian].
3.
go back to reference C. C. Kerr, R. M. Stuart, D. Mistry, R. G. Abeysuriya, K. Rosenfeld, G. R. Hart, et al., “Covasim: An agent-based model of COVID-19 dynamics and interventions,” PLOS Comput. Biol. 17 (7), e1009149 (2021).CrossRef C. C. Kerr, R. M. Stuart, D. Mistry, R. G. Abeysuriya, K. Rosenfeld, G. R. Hart, et al., “Covasim: An agent-based model of COVID-19 dynamics and interventions,” PLOS Comput. Biol. 17 (7), e1009149 (2021).CrossRef
4.
go back to reference R. Laubenbacher, F. Hinkelmann, and M. Oremland, “Agent-based models and optimal control in biology: A discrete approach,” in Mathematical Concepts and Methods in Modern Biology: Using Modern Discrete Models (Academic Press, San Diego, CA, 2013), ch. 5, 143–178. R. Laubenbacher, F. Hinkelmann, and M. Oremland, “Agent-based models and optimal control in biology: A discrete approach,” in Mathematical Concepts and Methods in Modern Biology: Using Modern Discrete Models (Academic Press, San Diego, CA, 2013), ch. 5, 143–178.
5.
go back to reference A. I. Vlad, T. E. Sannikova, and A. A. Romaniuha, “Modeling the spread of respiratory viral infections in the city: a multi-agent approach,” Mat. Biol. Bioinf. 15 (2), 338–356 (2020) [in Russian].CrossRef A. I. Vlad, T. E. Sannikova, and A. A. Romaniuha, “Modeling the spread of respiratory viral infections in the city: a multi-agent approach,” Mat. Biol. Bioinf. 15 (2), 338–356 (2020) [in Russian].CrossRef
6.
go back to reference A. Aleta, D. Martin-Corral, Y. Pastore, A. Piontti, et al., “Modelling the impact of testing, contact tracing and household quarantine on second waves of COVID-19,” Nat. Hum. Behav. 4 (9), 964–971 (2020).CrossRef A. Aleta, D. Martin-Corral, Y. Pastore, A. Piontti, et al., “Modelling the impact of testing, contact tracing and household quarantine on second waves of COVID-19,” Nat. Hum. Behav. 4 (9), 964–971 (2020).CrossRef
7.
go back to reference M. S. Y. Lau, B. Grenfell, M. Thomas, M. Bryan, et al., “Characterizing superspreading events and age-specific infectiousness of SARS-CoV-2 transmission in Georgia, USA,” Proc. Natl. Acad. Sci. USA. 117 (36), 22430–22435 (2020).CrossRef M. S. Y. Lau, B. Grenfell, M. Thomas, M. Bryan, et al., “Characterizing superspreading events and age-specific infectiousness of SARS-CoV-2 transmission in Georgia, USA,” Proc. Natl. Acad. Sci. USA. 117 (36), 22430–22435 (2020).CrossRef
8.
go back to reference A. J. Kucharski, P. Klepac, A. J. K. Conlan, S. M. Kissler, et al., “Effectiveness of isolation, testing, contact tracing, and physical distancing on reducing transmission of SARS-CoV-2 in different settings: A mathematical modelling study,” Lancet Infect. Dis. 20 (10), 1151–1160 (2020).CrossRef A. J. Kucharski, P. Klepac, A. J. K. Conlan, S. M. Kissler, et al., “Effectiveness of isolation, testing, contact tracing, and physical distancing on reducing transmission of SARS-CoV-2 in different settings: A mathematical modelling study,” Lancet Infect. Dis. 20 (10), 1151–1160 (2020).CrossRef
9.
go back to reference N. Hoertel, M. Blachier, C. Blanco, M. Olfson, et al., “A stochastic agent-based model of the SARS-CoV-2 epidemic in France,” Nat. Med. 26 (9), 1417–1421 (2020).CrossRef N. Hoertel, M. Blachier, C. Blanco, M. Olfson, et al., “A stochastic agent-based model of the SARS-CoV-2 epidemic in France,” Nat. Med. 26 (9), 1417–1421 (2020).CrossRef
10.
go back to reference J. Hellewell, S. Abbott, A. Gimma, N. I. Bosse, et al., “Feasibility of controlling COVID-19 outbreaks by isolation of cases and contacts,” Lancet Glob. Health 8 (4), e488–e496 (2020).CrossRef J. Hellewell, S. Abbott, A. Gimma, N. I. Bosse, et al., “Feasibility of controlling COVID-19 outbreaks by isolation of cases and contacts,” Lancet Glob. Health 8 (4), e488–e496 (2020).CrossRef
11.
go back to reference B. F. Nielsen and K. Sneppen, “COVID-19 superspreading suggests mitigation by social network modulation,” Phys. Rev. Lett. 126 (11), 118301 (2021).CrossRef B. F. Nielsen and K. Sneppen, “COVID-19 superspreading suggests mitigation by social network modulation,” Phys. Rev. Lett. 126 (11), 118301 (2021).CrossRef
15.
go back to reference O. I. Krivorotko, S. I. Kabanikhin, N. Yu. Ziat’kov, A. Yu. Prikhod’ko, et al., “Mathematical modeling and prediction of COVID-19 in Moscow and in Novosibirsk oblast,” Sib. Zh. Vychisl. Mat. 23 (4), 395–414 (2020) [in Russian]. O. I. Krivorotko, S. I. Kabanikhin, N. Yu. Ziat’kov, A. Yu. Prikhod’ko, et al., “Mathematical modeling and prediction of COVID-19 in Moscow and in Novosibirsk oblast,” Sib. Zh. Vychisl. Mat. 23 (4), 395–414 (2020) [in Russian].
16.
go back to reference O. Krivorotko, M. Sosnovskaia, I. Vashchenko, C. Kerr, and D. Lesnic, “Agent-based modeling of COVID-19 outbreaks for New York state and UK: Parameter identification algorithm,” Infect. Dis. Model. 7, 30–44 (2022). O. Krivorotko, M. Sosnovskaia, I. Vashchenko, C. Kerr, and D. Lesnic, “Agent-based modeling of COVID-19 outbreaks for New York state and UK: Parameter identification algorithm,” Infect. Dis. Model. 7, 30–44 (2022).
18.
go back to reference G. E. P. Box and G. M. Jenkins, Time Series Analysis: Forecasting and Control. Issue 1 (Holden-Day, San Francisco, 1970; Mir, Moscow, 1974).MATH G. E. P. Box and G. M. Jenkins, Time Series Analysis: Forecasting and Control. Issue 1 (Holden-Day, San Francisco, 1970; Mir, Moscow, 1974).MATH
19.
go back to reference P. P. Dabral and M. Z. Murry, “Modelling and forecasting of rainfall time series using SARIMA,” Environ. Process. 4, 399–419 (2017).CrossRef P. P. Dabral and M. Z. Murry, “Modelling and forecasting of rainfall time series using SARIMA,” Environ. Process. 4, 399–419 (2017).CrossRef
20.
go back to reference D. A. Dickey and W. A. Fuller, “Distribution of the estimators for autoregressive time series with a unit root,” J. Am. Stat. Assoc. 74, 427–431 (1979).MathSciNetMATH D. A. Dickey and W. A. Fuller, “Distribution of the estimators for autoregressive time series with a unit root,” J. Am. Stat. Assoc. 74, 427–431 (1979).MathSciNetMATH
24.
go back to reference S. A. Lauer, K. H. Grantz, Q. Bi, et al., “The incubation period of coronavirus disease 2019 (COVID-19) from publicly reported confirmed cases: Estimation and application,” Ann. Int. Med. 172 (9), 577–582 (2020).CrossRef S. A. Lauer, K. H. Grantz, Q. Bi, et al., “The incubation period of coronavirus disease 2019 (COVID-19) from publicly reported confirmed cases: Estimation and application,” Ann. Int. Med. 172 (9), 577–582 (2020).CrossRef
25.
go back to reference R. Wölfel, V. M. Corman, W. Guggemos, et al., “Virological assessment of hospitalized patients with COVID-2019,” Nature 581, 465–469 (2020).CrossRef R. Wölfel, V. M. Corman, W. Guggemos, et al., “Virological assessment of hospitalized patients with COVID-2019,” Nature 581, 465–469 (2020).CrossRef
26.
go back to reference R. Verity, L. C. Okell, I. Dorigatti, et al., “Estimates of the severity of coronavirus disease 2019: a model-based analysis,” Lancet Infect. Dis. 20 (6), 669–677 (2020).CrossRef R. Verity, L. C. Okell, I. Dorigatti, et al., “Estimates of the severity of coronavirus disease 2019: a model-based analysis,” Lancet Infect. Dis. 20 (6), 669–677 (2020).CrossRef
27.
go back to reference D. Wang, B. Hu, C. Hu, et al., “Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China,” JAMA 323 (11), 1061–1069 (2020).CrossRef D. Wang, B. Hu, C. Hu, et al., “Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China,” JAMA 323 (11), 1061–1069 (2020).CrossRef
28.
go back to reference O. I. Krivorotko, S. I. Kabanikhin, M. I. Sosnovskaya, D. V. Andornaya, “Analysis of sensitivity and identifiability of mathematical models of the spread of the COVID-19 epidemic,” Vavilov. Zh. Genet. Sel. 25 (1), 82–91 (2021) [in Russian]. O. I. Krivorotko, S. I. Kabanikhin, M. I. Sosnovskaya, D. V. Andornaya, “Analysis of sensitivity and identifiability of mathematical models of the spread of the COVID-19 epidemic,” Vavilov. Zh. Genet. Sel. 25 (1), 82–91 (2021) [in Russian].
29.
go back to reference O. Krivorotko, M. Sosnovskaia, and I. Vashchenko, “Agent-based mathematical model of COVID-19 spread in Novosibirsk region: Identifiability, optimization and forecasting,” J. Inverse Ill-Posed Probl. (2022) (in print). O. Krivorotko, M. Sosnovskaia, and I. Vashchenko, “Agent-based mathematical model of COVID-19 spread in Novosibirsk region: Identifiability, optimization and forecasting,” J. Inverse Ill-Posed Probl. (2022) (in print).
31.
go back to reference A. A. Zhigliavskii and A. G. Zhilinskas, Methods for Finding the Global Extremum (Nauka, Moscow, 1991) [in Russian]. A. A. Zhigliavskii and A. G. Zhilinskas, Methods for Finding the Global Extremum (Nauka, Moscow, 1991) [in Russian].
32.
go back to reference J. Bergstra, R. Bardenet, B. Kégl, and Y. Bengio, “Algorithms for hyper-parameter optimization,” Adv. Neural Inf. Process. Syst. 24, 2546–2554 (2011). J. Bergstra, R. Bardenet, B. Kégl, and Y. Bengio, “Algorithms for hyper-parameter optimization,” Adv. Neural Inf. Process. Syst. 24, 2546–2554 (2011).
33.
go back to reference M. L. Daza-Torres, M. A. Capistrán, A. Capella, and J. A. Christen, “Bayesian sequential data assimilation for COVID-19 forecasting,” Epidemics 39, 100564 (2022).CrossRef M. L. Daza-Torres, M. A. Capistrán, A. Capella, and J. A. Christen, “Bayesian sequential data assimilation for COVID-19 forecasting,” Epidemics 39, 100564 (2022).CrossRef
Metadata
Title
Simulation of COVID-19 Spread Scenarios in the Republic of Kazakhstan Based on Regularization of the Agent-Based Model
Authors
O. I. Krivorotko
S. I. Kabanikhin
M. A. Bektemesov
M. I. Sosnovskaya
A. V. Neverov
Publication date
01-03-2023
Publisher
Pleiades Publishing
Published in
Journal of Applied and Industrial Mathematics / Issue 1/2023
Print ISSN: 1990-4789
Electronic ISSN: 1990-4797
DOI
https://doi.org/10.1134/S1990478923010118

Other articles of this Issue 1/2023

Journal of Applied and Industrial Mathematics 1/2023 Go to the issue

Premium Partners