Skip to main content
Top
Published in: The Journal of Supercomputing 3/2020

11-11-2019

Parity-preserving reversible flip-flops with low quantum cost in nanoscale

Authors: Mojtaba Noorallahzadeh, Mohammad Mosleh

Published in: The Journal of Supercomputing | Issue 3/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In recent years, reversible logic has attracted high importance because of its in-cognitive property of reduction in energy dissipation which is the main requirement in low-power digital circuits. Reversible logic is one of emerging fields of research, which is used in various fields such as low-power CMOS, DNA computing, quantum computing, fault tolerance and nanotechnology. A circuit is reversible if it has the same number of inputs and outputs, and there is a one-to-one correspondence between them. A reversible circuit is parity-preserving if the EXOR of the inputs is equal to the EXOR of the outputs. Flip-flops are considered as one of the most important digital designs that are widely used as building blocks in the design of sequential circuits. In this paper, two new 4 × 4 parity-preserving reversible blocks are first proposed, called PNM1 and PNM2, respectively. Quantum syntheses of the proposed blocks are carried out using the Miller et al. method. In the following, effective designs of parity-preserving reversible D, T and J-K flip-flops along with their master–slave versions are introduced using the proposed parity-preserving reversible blocks and DFG gates. Finally, a 4-bit asynchronous up-counter is designed using the proposed parity-preserving reversible D flip-flop and FRG gate. The results of the comparisons show that although the proposed structures are close to previous designs in terms of gate count, constant input and garbage output criteria, they are superior in terms of quantum cost.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literature
3.
go back to reference Perkowski M et al (2001) A general decomposition for reversible logic. In: Proceedings of RM’2001, Starkville, pp 119–138 Perkowski M et al (2001) A general decomposition for reversible logic. In: Proceedings of RM’2001, Starkville, pp 119–138
4.
go back to reference Toffoli T (1980) Reversible computing. In: International Colloquium on Automata, Languages, and Programming. Springer, pp 632–644 Toffoli T (1980) Reversible computing. In: International Colloquium on Automata, Languages, and Programming. Springer, pp 632–644
5.
go back to reference Allen JS, Biamonte JD, Perkowski M (2005) ATPG for reversible circuits using technology-related fault models. In: Proceedings of the 7th international symposium on representations and methodology of future computing technologies, RM2005, Tokyo, Japan, pp 100–107 Allen JS, Biamonte JD, Perkowski M (2005) ATPG for reversible circuits using technology-related fault models. In: Proceedings of the 7th international symposium on representations and methodology of future computing technologies, RM2005, Tokyo, Japan, pp 100–107
6.
go back to reference Taraphdar C, Chattopadhyay T, Roy JN (2010) Mach-Zehnder interferometer-based all-optical reversible logic gate. Opt Laser Technol 42(2):249–259CrossRef Taraphdar C, Chattopadhyay T, Roy JN (2010) Mach-Zehnder interferometer-based all-optical reversible logic gate. Opt Laser Technol 42(2):249–259CrossRef
7.
go back to reference Nielson MA, Chuang IL (2000) Quantum computation and quantum information. Cambridge University Press, Cambridge Nielson MA, Chuang IL (2000) Quantum computation and quantum information. Cambridge University Press, Cambridge
8.
go back to reference Wood DH, Chen J (2004) Fredkin gate circuits via recombination enzymes. In: Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No. 04TH8753), 2004, vol 2. IEEE, pp 1896–1900 Wood DH, Chen J (2004) Fredkin gate circuits via recombination enzymes. In: Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No. 04TH8753), 2004, vol 2. IEEE, pp 1896–1900
9.
go back to reference Bandyopadhyay S, Balandin A, Roychowdhury V, Vatan F (1998) Nanoelectronic implementations of reversible and quantum logic. Superlattices Microstruct 23(3–4):445–464CrossRef Bandyopadhyay S, Balandin A, Roychowdhury V, Vatan F (1998) Nanoelectronic implementations of reversible and quantum logic. Superlattices Microstruct 23(3–4):445–464CrossRef
10.
go back to reference Barenco A et al (1995) Elementary gates for quantum computation. Phys Rev A 52(5):3457CrossRef Barenco A et al (1995) Elementary gates for quantum computation. Phys Rev A 52(5):3457CrossRef
11.
go back to reference Morrison MA (2012) Design of a reversible alu based on novel reversible logic structures Morrison MA (2012) Design of a reversible alu based on novel reversible logic structures
12.
go back to reference Hung WN, Song X, Yang G, Yang J, Perkowski M (2004) Quantum logic synthesis by symbolic reachability analysis. In: Proceedings of the 41st Annual Design Automation Conference, 2004. ACM, pp 838–841 Hung WN, Song X, Yang G, Yang J, Perkowski M (2004) Quantum logic synthesis by symbolic reachability analysis. In: Proceedings of the 41st Annual Design Automation Conference, 2004. ACM, pp 838–841
13.
14.
go back to reference Babu HMH, Mia MS (2016) Design of a compact reversible fault tolerant division circuit. Microelectron J 51:15–29CrossRef Babu HMH, Mia MS (2016) Design of a compact reversible fault tolerant division circuit. Microelectron J 51:15–29CrossRef
15.
go back to reference Biswas AK, Hasan MM, Chowdhury AR, Babu HMH (2008) Efficient approaches for designing reversible binary coded decimal adders. Microelectron J 39(12):1693–1703CrossRef Biswas AK, Hasan MM, Chowdhury AR, Babu HMH (2008) Efficient approaches for designing reversible binary coded decimal adders. Microelectron J 39(12):1693–1703CrossRef
16.
go back to reference Akbar EPA, Haghparast M, Navi K (2011) Novel design of a fast reversible Wallace sign multiplier circuit in nanotechnology. Microelectron J 42(8):973–981CrossRef Akbar EPA, Haghparast M, Navi K (2011) Novel design of a fast reversible Wallace sign multiplier circuit in nanotechnology. Microelectron J 42(8):973–981CrossRef
17.
go back to reference Noorallahzadeh M, Mosleh M (2019) Efficient designs of reversible latches with low quantum cost. IET Circuits Dev Syst 13(6):806–815CrossRef Noorallahzadeh M, Mosleh M (2019) Efficient designs of reversible latches with low quantum cost. IET Circuits Dev Syst 13(6):806–815CrossRef
18.
go back to reference Misra NK, Sen B, Wairya S (2017) Towards designing efficient reversible binary code converters and a dual-rail checker for emerging nanocircuits. J Comput Electron 16(2):442–458CrossRef Misra NK, Sen B, Wairya S (2017) Towards designing efficient reversible binary code converters and a dual-rail checker for emerging nanocircuits. J Comput Electron 16(2):442–458CrossRef
19.
20.
go back to reference Parhami B (2006) Fault-tolerant reversible circuits. In: 2006 Fortieth Asilomar Conference on Signals, Systems and Computers, 2006. IEEE, pp 1726–1729 Parhami B (2006) Fault-tolerant reversible circuits. In: 2006 Fortieth Asilomar Conference on Signals, Systems and Computers, 2006. IEEE, pp 1726–1729
21.
go back to reference Haghparast M, Navi K (2008) Design of a novel fault tolerant reversible full adder for nanotechnology based systems. World Appl Sci J 3(1):114–118 Haghparast M, Navi K (2008) Design of a novel fault tolerant reversible full adder for nanotechnology based systems. World Appl Sci J 3(1):114–118
22.
go back to reference Valinataj M (2017) Novel parity-preserving reversible logic array multipliers. J Supercomput 73(11):4843–4867CrossRef Valinataj M (2017) Novel parity-preserving reversible logic array multipliers. J Supercomput 73(11):4843–4867CrossRef
24.
go back to reference Dastan F, Haghparast M (2011) A novel nanometric fault tolerant reversible divider. Int J Phys Sci 6(24):5671–5681 Dastan F, Haghparast M (2011) A novel nanometric fault tolerant reversible divider. Int J Phys Sci 6(24):5671–5681
25.
go back to reference Safari P, Haghparast M, Azari A, Branch A (2012) A design of fault tolerant reversible arithmetic logic unit. Life Sci J 9(3):643–646 Safari P, Haghparast M, Azari A, Branch A (2012) A design of fault tolerant reversible arithmetic logic unit. Life Sci J 9(3):643–646
26.
go back to reference Misra NK, Wairya S, Sen B (2018) Design of conservative, reversible sequential logic for cost efficient emerging nano circuits with enhanced testability. Ain Shams Eng J 9(4):2027–2037CrossRef Misra NK, Wairya S, Sen B (2018) Design of conservative, reversible sequential logic for cost efficient emerging nano circuits with enhanced testability. Ain Shams Eng J 9(4):2027–2037CrossRef
27.
go back to reference Sarker A, Babu HMH, Rashid SMM (2015) Design of a DNA-based reversible arithmetic and logic unit. IET Nanobiotechnol 9(4):226–238CrossRef Sarker A, Babu HMH, Rashid SMM (2015) Design of a DNA-based reversible arithmetic and logic unit. IET Nanobiotechnol 9(4):226–238CrossRef
28.
go back to reference Thapliyal H, Ranganathan N (2010) Design of reversible sequential circuits optimizing quantum cost, delay, and garbage outputs. ACM J Emerg Technol Comput Syst (JETC) 6(4):14 Thapliyal H, Ranganathan N (2010) Design of reversible sequential circuits optimizing quantum cost, delay, and garbage outputs. ACM J Emerg Technol Comput Syst (JETC) 6(4):14
30.
go back to reference Morrison M, Ranganathan N (2011) Design of a reversible ALU based on novel programmable reversible logic gate structures. In: 2011 IEEE Computer Society Annual Symposium on VLSI, 2011. IEEE, pp 126–131 Morrison M, Ranganathan N (2011) Design of a reversible ALU based on novel programmable reversible logic gate structures. In: 2011 IEEE Computer Society Annual Symposium on VLSI, 2011. IEEE, pp 126–131
31.
go back to reference Smolin JA, DiVincenzo DP (1996) Five two-bit quantum gates are sufficient to implement the quantum Fredkin gate. Phys Rev A 53(4):2855CrossRef Smolin JA, DiVincenzo DP (1996) Five two-bit quantum gates are sufficient to implement the quantum Fredkin gate. Phys Rev A 53(4):2855CrossRef
32.
go back to reference Morrison M, Ranganathan N (2013) A novel optimization method for reversible logic circuit minimization. In: 2013 IEEE Computer Society Annual Symposium on VLSI (ISVLSI), 2013. IEEE, pp 182–187 Morrison M, Ranganathan N (2013) A novel optimization method for reversible logic circuit minimization. In: 2013 IEEE Computer Society Annual Symposium on VLSI (ISVLSI), 2013. IEEE, pp 182–187
33.
go back to reference Rahman MM, Banerjee A, Dueck GW, Pathak A (2011) Two-qubit quantum gates to reduce the quantum cost of reversible circuit. In: 2011 41st IEEE International Symposium on Multiple-Valued Logic, 2011. IEEE, pp 86–92 Rahman MM, Banerjee A, Dueck GW, Pathak A (2011) Two-qubit quantum gates to reduce the quantum cost of reversible circuit. In: 2011 41st IEEE International Symposium on Multiple-Valued Logic, 2011. IEEE, pp 86–92
34.
go back to reference Miller DM, Maslov D, Dueck GW (2003) A transformation based algorithm for reversible logic synthesis. In: Proceedings 2003. Design Automation Conference (IEEE Cat. No. 03CH37451), 2003. IEEE, pp 318–323 Miller DM, Maslov D, Dueck GW (2003) A transformation based algorithm for reversible logic synthesis. In: Proceedings 2003. Design Automation Conference (IEEE Cat. No. 03CH37451), 2003. IEEE, pp 318–323
35.
go back to reference Sasanian Z (2012) Technology mapping and optimization for reversible and quantum circuits, Doctoral dissertation Sasanian Z (2012) Technology mapping and optimization for reversible and quantum circuits, Doctoral dissertation
36.
go back to reference Maslov D, Dueck GW, Miller DM (2005) Toffoli network synthesis with templates. IEEE Trans Comput Aided Des Integr Circuits Syst 24(6):807–817CrossRef Maslov D, Dueck GW, Miller DM (2005) Toffoli network synthesis with templates. IEEE Trans Comput Aided Des Integr Circuits Syst 24(6):807–817CrossRef
37.
go back to reference Maslov D, Dueck GW, Miller DM (2003) Simplification of Toffoli networks via templates. In: 16th Symposium on Integrated Circuits and Systems Design, 2003. SBCCI 2003. Proceedings, 2003. IEEE, pp 53–58 Maslov D, Dueck GW, Miller DM (2003) Simplification of Toffoli networks via templates. In: 16th Symposium on Integrated Circuits and Systems Design, 2003. SBCCI 2003. Proceedings, 2003. IEEE, pp 53–58
38.
go back to reference Ali MB, Hirayama T, Yamanaka K, Nishitani Y (2018) Function design for minimum multiple-control Toffoli circuits of reversible adder/subtractor blocks and arithmetic logic units. IEICE Trans Fundam Electron Commun Comput Sci 101(12):2231–2243CrossRef Ali MB, Hirayama T, Yamanaka K, Nishitani Y (2018) Function design for minimum multiple-control Toffoli circuits of reversible adder/subtractor blocks and arithmetic logic units. IEICE Trans Fundam Electron Commun Comput Sci 101(12):2231–2243CrossRef
39.
go back to reference Ali MB, Hirayama T, Yamanaka K, Nishitani Y (2015) Quantum cost reduction of reversible circuits using new Toffoli decomposition techniques. In: 2015 International Conference on Computational Science and Computational Intelligence (CSCI), 2015. IEEE, pp 59–64 Ali MB, Hirayama T, Yamanaka K, Nishitani Y (2015) Quantum cost reduction of reversible circuits using new Toffoli decomposition techniques. In: 2015 International Conference on Computational Science and Computational Intelligence (CSCI), 2015. IEEE, pp 59–64
40.
go back to reference Pareek V, Gupta S, Jain SC, Kumar A (2014) A novel realization of sequential reversible building blocks. In: Future Computing 2014, the Sixth International Conference on Future Computational Technologies and Applications, 2014, pp 1–6 Pareek V, Gupta S, Jain SC, Kumar A (2014) A novel realization of sequential reversible building blocks. In: Future Computing 2014, the Sixth International Conference on Future Computational Technologies and Applications, 2014, pp 1–6
41.
go back to reference Gharajeh MS, Haghparast M (2012) On design of a fault tolerant reversible 4-bit binary counter with parallel load. Aust J Basic Appl Sci 6(7):430–446 Gharajeh MS, Haghparast M (2012) On design of a fault tolerant reversible 4-bit binary counter with parallel load. Aust J Basic Appl Sci 6(7):430–446
42.
go back to reference Zhou R-G, Li Y-C, Zhang M-Q (2014) Novel designs for fault tolerant reversible binary coded decimal adders. Int J Electron 101(10):1336–1356CrossRef Zhou R-G, Li Y-C, Zhang M-Q (2014) Novel designs for fault tolerant reversible binary coded decimal adders. Int J Electron 101(10):1336–1356CrossRef
43.
go back to reference Haghparast M, Bolhassani A (2016) On design of parity preserving reversible adder circuits. Int J Theor Phys 55(12):5118–5135MATHCrossRef Haghparast M, Bolhassani A (2016) On design of parity preserving reversible adder circuits. Int J Theor Phys 55(12):5118–5135MATHCrossRef
44.
go back to reference Misra NK, Sen B, Wairya S, Bhoi B (2017) Testable novel parity-preserving reversible gate and low-cost quantum decoder design in 1D molecular-QCA. J Circuits Syst Comput 26(09):1750145CrossRef Misra NK, Sen B, Wairya S, Bhoi B (2017) Testable novel parity-preserving reversible gate and low-cost quantum decoder design in 1D molecular-QCA. J Circuits Syst Comput 26(09):1750145CrossRef
45.
go back to reference Arabani SR, Reshadinezhad MR, Haghparast M (2018) Design of a parity preserving reversible full adder/subtractor circuit. Int J Comput Intell Stud 7(1):19–32CrossRef Arabani SR, Reshadinezhad MR, Haghparast M (2018) Design of a parity preserving reversible full adder/subtractor circuit. Int J Comput Intell Stud 7(1):19–32CrossRef
48.
go back to reference Hagparast M, Navi K (2008) A novel fault tolerant reversible gate for nanotechnology based system. Am J Appl Sci 5(5):519–523CrossRef Hagparast M, Navi K (2008) A novel fault tolerant reversible gate for nanotechnology based system. Am J Appl Sci 5(5):519–523CrossRef
49.
go back to reference Thapliyal H, Srinivas M (2006) An extension to DNA based Fredkin gate circuits: design of reversible sequential circuits using Fredkin gates. arXiv:cs/0603092 Thapliyal H, Srinivas M (2006) An extension to DNA based Fredkin gate circuits: design of reversible sequential circuits using Fredkin gates. arXiv:​cs/​0603092
50.
go back to reference Thapliyal H, Ranganathan N (2009) Reversible logic-based concurrently testable latches for molecular QCA. IEEE Trans Nanotechnol 9(1):62–69CrossRef Thapliyal H, Ranganathan N (2009) Reversible logic-based concurrently testable latches for molecular QCA. IEEE Trans Nanotechnol 9(1):62–69CrossRef
51.
go back to reference Haghparast M, Navi K (2011) Novel reversible fault tolerant error coding and detection circuits. Int J Quantum Inf 9(02):723–738MATHCrossRef Haghparast M, Navi K (2011) Novel reversible fault tolerant error coding and detection circuits. Int J Quantum Inf 9(02):723–738MATHCrossRef
52.
53.
go back to reference Goswami M, Raj G, Narzary A, Sen B (2018) A methodology to design online testable reversible circuits. In: International Symposium on VLSI Design and Test, 2018. Springer, pp 322–334 Goswami M, Raj G, Narzary A, Sen B (2018) A methodology to design online testable reversible circuits. In: International Symposium on VLSI Design and Test, 2018. Springer, pp 322–334
54.
go back to reference Walus K, Dysart TJ, Jullien GA, Budiman RA (2004) QCADesigner: a rapid design and simulation tool for quantum-dot cellular automata. IEEE Trans Nanotechnol 3(1):26–31CrossRef Walus K, Dysart TJ, Jullien GA, Budiman RA (2004) QCADesigner: a rapid design and simulation tool for quantum-dot cellular automata. IEEE Trans Nanotechnol 3(1):26–31CrossRef
55.
go back to reference Seyedi S, Darbandi M, Navimipour NJ (2019) Designing an efficient fault tolerance D-latch based on quantum-dot cellular automata nanotechnology. Optik 185:827–837CrossRef Seyedi S, Darbandi M, Navimipour NJ (2019) Designing an efficient fault tolerance D-latch based on quantum-dot cellular automata nanotechnology. Optik 185:827–837CrossRef
56.
go back to reference Fam SR, Navimipour NJ (2019) Design of a loop-based random access memory based on the nanoscale quantum dot cellular automata. Photon Netw Commun 37(1):120–130CrossRef Fam SR, Navimipour NJ (2019) Design of a loop-based random access memory based on the nanoscale quantum dot cellular automata. Photon Netw Commun 37(1):120–130CrossRef
57.
go back to reference Ahmadpour S-S, Mosleh M (2019) New designs of fault-tolerant adders in quantum-dot cellular automata. Nano Commun Netw 19:10–25CrossRef Ahmadpour S-S, Mosleh M (2019) New designs of fault-tolerant adders in quantum-dot cellular automata. Nano Commun Netw 19:10–25CrossRef
58.
go back to reference Ahmadpour SS, Mosleh M, Rasouli Heikalabad S (2019) Robust QCA full-adders using an efficient fault-tolerant five-input majority gate. Int J Circuit Theory Appl 47(7):1037–1056CrossRef Ahmadpour SS, Mosleh M, Rasouli Heikalabad S (2019) Robust QCA full-adders using an efficient fault-tolerant five-input majority gate. Int J Circuit Theory Appl 47(7):1037–1056CrossRef
59.
go back to reference Ahmadpour S-S, Mosleh M (2018) A novel fault-tolerant multiplexer in quantum-dot cellular automata technology. J Supercomput 74(9):4696–4716CrossRef Ahmadpour S-S, Mosleh M (2018) A novel fault-tolerant multiplexer in quantum-dot cellular automata technology. J Supercomput 74(9):4696–4716CrossRef
60.
go back to reference Ahmadpour S-S, Mosleh M, Heikalabad SR (2018) A revolution in nanostructure designs by proposing a novel QCA full-adder based on optimized 3-input XOR. Phys B 550:383–392CrossRef Ahmadpour S-S, Mosleh M, Heikalabad SR (2018) A revolution in nanostructure designs by proposing a novel QCA full-adder based on optimized 3-input XOR. Phys B 550:383–392CrossRef
61.
go back to reference Abedi D, Jaberipur G, Sangsefidi M (2015) Coplanar full adder in quantum-dot cellular automata via clock-zone-based crossover. IEEE Trans Nanotechnol 14(3):497–504CrossRef Abedi D, Jaberipur G, Sangsefidi M (2015) Coplanar full adder in quantum-dot cellular automata via clock-zone-based crossover. IEEE Trans Nanotechnol 14(3):497–504CrossRef
62.
go back to reference Srivastava S, Asthana A, Bhanja S, Sarkar S (2011) QCAPro-an error-power estimation tool for QCA circuit design. In: 2011 IEEE International Symposium of Circuits and Systems (ISCAS), 2011. IEEE, pp 2377–2380 Srivastava S, Asthana A, Bhanja S, Sarkar S (2011) QCAPro-an error-power estimation tool for QCA circuit design. In: 2011 IEEE International Symposium of Circuits and Systems (ISCAS), 2011. IEEE, pp 2377–2380
Metadata
Title
Parity-preserving reversible flip-flops with low quantum cost in nanoscale
Authors
Mojtaba Noorallahzadeh
Mohammad Mosleh
Publication date
11-11-2019
Publisher
Springer US
Published in
The Journal of Supercomputing / Issue 3/2020
Print ISSN: 0920-8542
Electronic ISSN: 1573-0484
DOI
https://doi.org/10.1007/s11227-019-03074-3

Other articles of this Issue 3/2020

The Journal of Supercomputing 3/2020 Go to the issue

EditorialNotes

Editorial Preface

Premium Partner