Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

17-03-2016 | Original Article | Issue 5/2017

International Journal of Machine Learning and Cybernetics 5/2017

Parity symmetrical collaborative representation-based classification for face recognition

Journal:
International Journal of Machine Learning and Cybernetics > Issue 5/2017
Authors:
Xiaoning Song, Xibei Yang, Changbin Shao, Jingyu Yang

Abstract

Although the subspace-based feature extraction algorithms provided a feasible strategy to deal with the classification of high-dimensional data, most of the existing algorithms are locality-oriented and suffer from many difficulties such as uncertain information associated with dataset and small sample size problem. In this paper, we propose a novel collaborative representation-based classification method using parity symmetry strategy for face recognition. More specifically, we firstly synthesize a set of parity symmetrical images by means of odd–even decomposition theorem, aiming to augment the training set. Secondly, each query sample is represented as a linear combination of the training samples from the extended training set, we then exploit the optimal representation of each reconstructed image with relevant contribution from each class. The final goal of the proposed method is to generate the best parity symmetrical representation of the query sample to perform robust face classification. Experimental results conducted on ORL, FERET, AR, PIE and LFW face databases demonstrate the effectiveness of the proposed method.

Please log in to get access to this content

To get access to this content you need the following product:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Literature
About this article

Other articles of this Issue 5/2017

International Journal of Machine Learning and Cybernetics 5/2017 Go to the issue