Skip to main content
Top
Published in: Journal of Iron and Steel Research International 6/2022

16-03-2022 | Original Paper

Particle motion simulation and pulverized coal injection combustion simulation of titanomagnetite pellets in rotary kiln for reduction process with coal

Authors: Peng Liu, Bing-guo Liu, Li-bo Zhang, Jin-hui Peng

Published in: Journal of Iron and Steel Research International | Issue 6/2022

Login to get access

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The production process of direct reduced iron from titanomagnetite by coal reduction in air in rotary kiln is a key step in the extraction of titanium and iron. This process is conducive to alleviating the stocking problem of a large amount of Ti-bearing blast furnace slag. The relationships between particle movement and pulverized coal injection combustion in rotary kiln were studied by the particle motion simulation and the pulverized coal injection combustion simulation. In particle motion simulation, the repose angle of ore particles was calculated to be 28.06°, and the reaction zone was roughly determined by the reaction temperature isothermal surface and the repose angle; the axial discrete distribution of ore particles would further cause the axial energy fluctuation due to the endothermic nature of the reduction. In pulverized coal injection combustion simulation, the rebound effect of coal injection under gravity would cause local overheating in the rebound region due to the benefits of heat and mass transfer processes, while this could strengthen the reduction reaction of ore particles and cause agglomerate by melting. Two suggestions on weakening the energy fluctuation and agglomerate were proposed based on the characteristics of particle motion and external carbon reaction.
Literature
[1]
go back to reference S.Y. Chen, M.S. Chu, Int. J. Miner. Metall. Mater. 21 (2014) 225–233. S.Y. Chen, M.S. Chu, Int. J. Miner. Metall. Mater. 21 (2014) 225–233.
[2]
go back to reference G.B. Sadykhov, I.A. Karyazin, Russ. Metall. 2007 (2007) 447–454. G.B. Sadykhov, I.A. Karyazin, Russ. Metall. 2007 (2007) 447–454.
[3]
go back to reference X. Zhu, W. Li, X. Guan, Int. J. Miner. Process. 157 (2016) 55–59. X. Zhu, W. Li, X. Guan, Int. J. Miner. Process. 157 (2016) 55–59.
[4]
go back to reference T. Hu, X.W. Lü, C.G. Bai, G.B. Qiu, Int. J. Miner. Metall. Mater. 21 (2014) 131–137. T. Hu, X.W. Lü, C.G. Bai, G.B. Qiu, Int. J. Miner. Metall. Mater. 21 (2014) 131–137.
[5]
go back to reference D. Chen, H. Zhao, G. Hu, T. Qi, H. Yu, G. Zhang, L. Wang, W. Wang, J. Hazard. Mater. 294 (2015) 35–40. D. Chen, H. Zhao, G. Hu, T. Qi, H. Yu, G. Zhang, L. Wang, W. Wang, J. Hazard. Mater. 294 (2015) 35–40.
[6]
go back to reference J.L. Zhang, X.D. Xing, M.M. Cao, K.X. Jiao, C.L. Wang, S. Ren, J. Iron Steel Res. Int. 20 (2013) 1–7. J.L. Zhang, X.D. Xing, M.M. Cao, K.X. Jiao, C.L. Wang, S. Ren, J. Iron Steel Res. Int. 20 (2013) 1–7.
[7]
go back to reference B.C. Jena, W. Dresler, I.G. Reilly, Miner. Eng. 8 (1995) 159–168. B.C. Jena, W. Dresler, I.G. Reilly, Miner. Eng. 8 (1995) 159–168.
[8]
go back to reference Y.F. Feng, Study on solid reduction strengthening and comprehensive utilization of titanomagnetite, Central South University, Changsha, China, 2007. Y.F. Feng, Study on solid reduction strengthening and comprehensive utilization of titanomagnetite, Central South University, Changsha, China, 2007.
[9]
go back to reference P. Liu, L.B. Zhang, B.G. Liu, G.J. He, J.H. Peng, M.Y. Huang, Int. J. Miner. Metall. Mater. 28 (2021) 88–97. P. Liu, L.B. Zhang, B.G. Liu, G.J. He, J.H. Peng, M.Y. Huang, Int. J. Miner. Metall. Mater. 28 (2021) 88–97.
[10]
go back to reference Y.Z. Wang, J.L. Zhang, Z.J. Liu, C.B. Du, JOM 69 (2017) 2397–2403. Y.Z. Wang, J.L. Zhang, Z.J. Liu, C.B. Du, JOM 69 (2017) 2397–2403.
[11]
go back to reference S. Wang, Y. Guo, T. Jiang, F. Chen, F. Zheng, L. Yang, M. Tang, JOM 71 (2019) 329–335. S. Wang, Y. Guo, T. Jiang, F. Chen, F. Zheng, L. Yang, M. Tang, JOM 71 (2019) 329–335.
[12]
go back to reference S. Wang, Y. Guo, T. Jiang, F. Chen, F. Zheng, L. Yang, JOM 71 (2019) 1858–1865. S. Wang, Y. Guo, T. Jiang, F. Chen, F. Zheng, L. Yang, JOM 71 (2019) 1858–1865.
[13]
go back to reference W. Zhao, H.T. Wang, Z.G. Liu, M.S. Chu, Z.W. Ying, J. Tang, JOM 69 (2017) 1737–1744. W. Zhao, H.T. Wang, Z.G. Liu, M.S. Chu, Z.W. Ying, J. Tang, JOM 69 (2017) 1737–1744.
[14]
go back to reference S. Wang, Y. Guo, T. Jiang, L. Yang, F. Chen, F. Zheng, X. Xie, M. Tang, JOM 69 (2017) 1646–1653. S. Wang, Y. Guo, T. Jiang, L. Yang, F. Chen, F. Zheng, X. Xie, M. Tang, JOM 69 (2017) 1646–1653.
[15]
go back to reference Q. Li, S. Ji, Q. He, S. Zheng, Trans. Ind. Inst. Met. 72 (2019) 635–644. Q. Li, S. Ji, Q. He, S. Zheng, Trans. Ind. Inst. Met. 72 (2019) 635–644.
[16]
go back to reference Y.J. Wang, Y.Z. Xue, M. Pan, S.M. Wen, J. Cent. South Univ. (Sci. Technol.) 50 (2019) 497–505. Y.J. Wang, Y.Z. Xue, M. Pan, S.M. Wen, J. Cent. South Univ. (Sci. Technol.) 50 (2019) 497–505.
[17]
go back to reference H.Y. Sun, Q.S. Zhu, H.Z. Li, Chin. J. Process Eng. 18 (2018) 1146–1159. H.Y. Sun, Q.S. Zhu, H.Z. Li, Chin. J. Process Eng. 18 (2018) 1146–1159.
[18]
go back to reference T.A.I. Lasheen, Hydrometallurgy 76 (2005) 123–129. T.A.I. Lasheen, Hydrometallurgy 76 (2005) 123–129.
[19]
go back to reference D. Wang, J. Chu, Y. Liu, J. Li, T. Xue, W. Wang, T. Qi, Ind. Eng. Chem. Res. 52 (2013) 15756–15762. D. Wang, J. Chu, Y. Liu, J. Li, T. Xue, W. Wang, T. Qi, Ind. Eng. Chem. Res. 52 (2013) 15756–15762.
[20]
go back to reference X.X. Zhou, Study on the relationship between environmental regulation and fossil energy consumption path in China, China University of Mining and Technology, Xuzhou, China, 2016. X.X. Zhou, Study on the relationship between environmental regulation and fossil energy consumption path in China, China University of Mining and Technology, Xuzhou, China, 2016.
[21]
go back to reference L.X. Dou, L. Feng, S. Zhang, Shanxi Coking Coal Science & Technology 35 (2011) No. 12, 36–39. L.X. Dou, L. Feng, S. Zhang, Shanxi Coking Coal Science & Technology 35 (2011) No. 12, 36–39.
[22]
go back to reference Q. Du, H. Mo, L. Tian, L. Yuan, in: 2010 International Conference on Measuring Technology and Mechatronics Automation, IEEE, Changsha, China, 2010, pp. 286–290. Q. Du, H. Mo, L. Tian, L. Yuan, in: 2010 International Conference on Measuring Technology and Mechatronics Automation, IEEE, Changsha, China, 2010, pp. 286–290.
[23]
go back to reference A. Atmaca, R. Yumrutas, Appl. Therm. Eng. 66 (2014) 435–444. A. Atmaca, R. Yumrutas, Appl. Therm. Eng. 66 (2014) 435–444.
[24]
go back to reference J. Mu, F. Leder, W.C. Park, R.A. Hard, J. Megy, H. Reiss, Metall. Trans. B 17 (1986) 861–868. J. Mu, F. Leder, W.C. Park, R.A. Hard, J. Megy, H. Reiss, Metall. Trans. B 17 (1986) 861–868.
[25]
go back to reference A.A. Boateng, Rotary kilns—transport phenomena and transport processes, 2nd Ed., Elsevier, 2016. A.A. Boateng, Rotary kilns—transport phenomena and transport processes, 2nd Ed., Elsevier, 2016.
[26]
go back to reference M. Wang, W. Zhu, Q. Sun, X. Zhang, Powder Technol. 267 (2014) 221–233. M. Wang, W. Zhu, Q. Sun, X. Zhang, Powder Technol. 267 (2014) 221–233.
[27]
go back to reference M. Fang, K. Luo, S. Yang, K. Zhang, J. Fan, Ind. Eng. Chem. Res. 52 (2013) 7556–7568. M. Fang, K. Luo, S. Yang, K. Zhang, J. Fan, Ind. Eng. Chem. Res. 52 (2013) 7556–7568.
[28]
go back to reference S. Zhao, X. Zhou, W. Liu, Granular Matter 17 (2015) 793–806. S. Zhao, X. Zhou, W. Liu, Granular Matter 17 (2015) 793–806.
[29]
go back to reference B. Nassauer, M. Kuna, Granular Matter 15 (2013) 349–355. B. Nassauer, M. Kuna, Granular Matter 15 (2013) 349–355.
[30]
go back to reference H. Mikulčić, E. von Berg, M. Vujanović, X. Wang, H. Tan, N. Duić, Appl. Energy 184 (2016) 1292–1305. H. Mikulčić, E. von Berg, M. Vujanović, X. Wang, H. Tan, N. Duić, Appl. Energy 184 (2016) 1292–1305.
[31]
go back to reference M. Hossain, S.Z. Islam, P. Pollard, Renewable Energy 51 (2013) 404–418. M. Hossain, S.Z. Islam, P. Pollard, Renewable Energy 51 (2013) 404–418.
[32]
go back to reference V. Yakhot, S.A. Orszag, J. Sci. Comput. 1 (1986) 3–51. V. Yakhot, S.A. Orszag, J. Sci. Comput. 1 (1986) 3–51.
[33]
go back to reference S. Wang, J. Lu, W. Li, J. Li, Z. Hu, Energy Fuels 20 (2006) 2350–2356. S. Wang, J. Lu, W. Li, J. Li, Z. Hu, Energy Fuels 20 (2006) 2350–2356.
[34]
go back to reference J. Blumm, E. Kaisersberger, J. Therm. Anal. Calorim. 64 (2001) 385–391. J. Blumm, E. Kaisersberger, J. Therm. Anal. Calorim. 64 (2001) 385–391.
[35]
go back to reference R. Zeng, W. Li, N. Wang, G. Fu, M. Chu, M. Zhu, Powder Technol. 376 (2020) 342–350. R. Zeng, W. Li, N. Wang, G. Fu, M. Chu, M. Zhu, Powder Technol. 376 (2020) 342–350.
[36]
go back to reference D. Chen, B. Song, L. Wang, T. Qi, Y. Wang, W. Wang, Miner. Eng. 24 (2011) 864–869. D. Chen, B. Song, L. Wang, T. Qi, Y. Wang, W. Wang, Miner. Eng. 24 (2011) 864–869.
[37]
go back to reference A.A. Adetoro, H. Sun, S. He, Q. Zhu, H. Li, Metall. Mater. Trans. B 19 (2018) 846–857. A.A. Adetoro, H. Sun, S. He, Q. Zhu, H. Li, Metall. Mater. Trans. B 19 (2018) 846–857.
[38]
go back to reference J. Chen, W. Chen, L. Mi, Y. Jiao, X. Wang, Metals 9 (2019) 95. J. Chen, W. Chen, L. Mi, Y. Jiao, X. Wang, Metals 9 (2019) 95.
[39]
go back to reference J. Dang, G.H. Zhang, X.J. Hu, K.C. Chou, Int. J. Miner. Metall. Mater. 20 (2013) 1134–1140. J. Dang, G.H. Zhang, X.J. Hu, K.C. Chou, Int. J. Miner. Metall. Mater. 20 (2013) 1134–1140.
[40]
go back to reference C. Geng, T.C. Sun, Y.W. Ma, C.Y. Xu, H.F. Yang, J. Iron Steel Res. Int. 24 (2017) 156–164. C. Geng, T.C. Sun, Y.W. Ma, C.Y. Xu, H.F. Yang, J. Iron Steel Res. Int. 24 (2017) 156–164.
[41]
go back to reference T. Hu, X. Lv, C. Bai, Z. Lun, G. Qiu, Metall. Mater. Trans. B 44 (2013) 252–260. T. Hu, X. Lv, C. Bai, Z. Lun, G. Qiu, Metall. Mater. Trans. B 44 (2013) 252–260.
[42]
go back to reference T. Hu, X. Lv, C. Bai, Steel Res. Int. 87 (2016) 494–500. T. Hu, X. Lv, C. Bai, Steel Res. Int. 87 (2016) 494–500.
[43]
go back to reference Y.G. Ding, J.S. Wang, X.F. She, G. Wang, Q.G. Xue, J. Iron Steel Res. Int. 20 (2012) No. 5, 28–33. Y.G. Ding, J.S. Wang, X.F. She, G. Wang, Q.G. Xue, J. Iron Steel Res. Int. 20 (2012) No. 5, 28–33.
Metadata
Title
Particle motion simulation and pulverized coal injection combustion simulation of titanomagnetite pellets in rotary kiln for reduction process with coal
Authors
Peng Liu
Bing-guo Liu
Li-bo Zhang
Jin-hui Peng
Publication date
16-03-2022
Publisher
Springer Nature Singapore
Published in
Journal of Iron and Steel Research International / Issue 6/2022
Print ISSN: 1006-706X
Electronic ISSN: 2210-3988
DOI
https://doi.org/10.1007/s42243-021-00741-9

Other articles of this Issue 6/2022

Journal of Iron and Steel Research International 6/2022 Go to the issue

Premium Partners