Skip to main content
Top
Published in: Artificial Life and Robotics 4/2016

25-07-2016 | Special Feature: Original Article

Particle swarm optimization with mutation operations controlled by landscape modality estimation using hill-valley detection

Authors: Tetsuyuki Takahama, Setsuko Sakai, Jun-ichi Kushida, Akira Hara

Published in: Artificial Life and Robotics | Issue 4/2016

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Particle swarm optimization (PSO) is one of swarm intelligence algorithms and has been used to solve various optimization problems. Since the performance of PSO is much affected by the algorithm parameters of PSO, studies on adaptive control of the parameters have been done. Adaptive PSO (APSO) is one of representative studies. Parameters are controlled according to the evolutionary state, where the state is estimated by distance relations among a best search point and other search points. Also, a global Gaussian mutation operation is introduced to escape from local optima. In this study, a new adaptive control based on landscape modality estimation using hill-valley detection is proposed. A proximity graph is created from search points, hills and valleys are detected in the graph, landscape modality of an objective function is identified as unimodal or multimodal. Parameters are adaptively controlled as: parameters for convergence are selected in unimodal landscape and parameters for divergence are selected in multimodal landscape. Also, two mutation operations are introduced according to the modality. In unimodal landscape, a new local mutation operation is applied to the worst hill point which will be moved toward the best point for convergence. In multimodal landscape, a new adaptive global mutation operation is applied to all hill points for escaping from local optima. The advantage of the proposed method is shown by comparing the results of the method with those by PSO with fixed parameters and APSO.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Kennedy J, Eberhart RC (1995) Particle swarm optimization. In: Proceedings of IEEE international conference on neural networks, Perth, Australia, pp 1942–1948 Kennedy J, Eberhart RC (1995) Particle swarm optimization. In: Proceedings of IEEE international conference on neural networks, Perth, Australia, pp 1942–1948
2.
go back to reference Kennedy J, Eberhart RC (2001) Swarm intelligence. Morgan Kaufmann, San Francisco Kennedy J, Eberhart RC (2001) Swarm intelligence. Morgan Kaufmann, San Francisco
3.
go back to reference AlRashidi M, El-Hawary M (2009) A survey of particle swarm optimization applications in electric power systems. IEEE Trans Evolut Comput 13(4):913–918CrossRef AlRashidi M, El-Hawary M (2009) A survey of particle swarm optimization applications in electric power systems. IEEE Trans Evolut Comput 13(4):913–918CrossRef
4.
go back to reference Kulkarni R, Venayagamoorthy G (2011) Particle swarm optimization in wireless-sensor networks: a brief survey. IEEE Trans Syst Man Cybern Part C Appl Rev 41(2):262–267CrossRef Kulkarni R, Venayagamoorthy G (2011) Particle swarm optimization in wireless-sensor networks: a brief survey. IEEE Trans Syst Man Cybern Part C Appl Rev 41(2):262–267CrossRef
5.
go back to reference Zhang Y, Wang S, Ji G (2015) A comprehensive survey on particle swarm optimization algorithm and its applications. Math Probl Eng 2015(1):1–38. doi: 10.1155/2015/931256 Zhang Y, Wang S, Ji G (2015) A comprehensive survey on particle swarm optimization algorithm and its applications. Math Probl Eng 2015(1):1–38. doi: 10.​1155/​2015/​931256
6.
go back to reference Zhan ZH, Zhang J, Li Y, Chung HSH (2009) Adaptive particle swarm optimization. IEEE Trans Syst Man Cybern Part B Cybern 39(6):1362–1381CrossRef Zhan ZH, Zhang J, Li Y, Chung HSH (2009) Adaptive particle swarm optimization. IEEE Trans Syst Man Cybern Part B Cybern 39(6):1362–1381CrossRef
7.
go back to reference Takahama T, Sakai S (2012) Differential evolution with dynamic strategy and parameter selection by detecting landscape modality. In: Proceedings of the 2012 IEEE Congress on evolutionary computation, pp 2114–2121 Takahama T, Sakai S (2012) Differential evolution with dynamic strategy and parameter selection by detecting landscape modality. In: Proceedings of the 2012 IEEE Congress on evolutionary computation, pp 2114–2121
8.
go back to reference Shi Y, Eberhart R (1999) Empirical study of particle swarm optimization. In: Proceedings of the 1999 Congress on evolutionary computation, pp 1945–1950 Shi Y, Eberhart R (1999) Empirical study of particle swarm optimization. In: Proceedings of the 1999 Congress on evolutionary computation, pp 1945–1950
9.
go back to reference Clerc M, Kennedy J (2002) The particle swarm–explosion, stability, and convergence in a multidimensional complex space. IEEE Trans Evolut Comput 6(1):58–73CrossRef Clerc M, Kennedy J (2002) The particle swarm–explosion, stability, and convergence in a multidimensional complex space. IEEE Trans Evolut Comput 6(1):58–73CrossRef
10.
go back to reference Eberhart R, Shi Y (2000) Comparing inertia weights and constriction factors in particle swarm optimization. In: Proceedings of the 2000 Congress on evolutionary computation, pp 84–88 Eberhart R, Shi Y (2000) Comparing inertia weights and constriction factors in particle swarm optimization. In: Proceedings of the 2000 Congress on evolutionary computation, pp 84–88
11.
go back to reference Takahama T, Sakai S (2012) Efficient constrained optimization by the \(\varepsilon\) constrained rank-based differential evolution. In: Proceedings of the 2012 IEEE Congress on evolutionary computation, pp 62–69 Takahama T, Sakai S (2012) Efficient constrained optimization by the \(\varepsilon\) constrained rank-based differential evolution. In: Proceedings of the 2012 IEEE Congress on evolutionary computation, pp 62–69
12.
go back to reference Riget J, Vesterstrøm JS (2002) A diversity-guided particle swarm optimizer-the ARPSO. Technical Report. EVAlife 2002-02, Department of Computer Science, University of Aarhus, Denmark Riget J, Vesterstrøm JS (2002) A diversity-guided particle swarm optimizer-the ARPSO. Technical Report. EVAlife 2002-02, Department of Computer Science, University of Aarhus, Denmark
13.
go back to reference Pant M, Radha T, Singh V (2007) A simple diversity guided particle swarm optimization. In: Proceedings of the 2007 IEEE Congress on evolutionary computation, pp 3294–3299. doi:10.1109/CEC.2007.4424896 Pant M, Radha T, Singh V (2007) A simple diversity guided particle swarm optimization. In: Proceedings of the 2007 IEEE Congress on evolutionary computation, pp 3294–3299. doi:10.​1109/​CEC.​2007.​4424896
14.
go back to reference Takahama T, Sakai S (2014) Selecting strategies in particle swarm optimization by sampling-based landscape modality detection. In: Proceedings of the 2014 international conference on parallel and distributed processing techniques and applications, pp 215–221 Takahama T, Sakai S (2014) Selecting strategies in particle swarm optimization by sampling-based landscape modality detection. In: Proceedings of the 2014 international conference on parallel and distributed processing techniques and applications, pp 215–221
15.
go back to reference Takahama T, Sakai S (2014) Selecting strategies in particle swarm optimization by sampling-based landscape modality detection using inner products. In: Proceedings of the SICE annual conference 2014, pp 1561–1566 Takahama T, Sakai S (2014) Selecting strategies in particle swarm optimization by sampling-based landscape modality detection using inner products. In: Proceedings of the SICE annual conference 2014, pp 1561–1566
16.
go back to reference Hu M, Wu T, Weir J (2013) An adaptive particle swarm optimization with multiple adaptive methods. IEEE Trans Evolut Comput 17(5):705–720CrossRef Hu M, Wu T, Weir J (2013) An adaptive particle swarm optimization with multiple adaptive methods. IEEE Trans Evolut Comput 17(5):705–720CrossRef
17.
go back to reference Hu M, Wu T, Weir JD (2012) An intelligent augmentation of particle swarm optimization with multiple adaptive methods. Inf Sci 213:68–83CrossRef Hu M, Wu T, Weir JD (2012) An intelligent augmentation of particle swarm optimization with multiple adaptive methods. Inf Sci 213:68–83CrossRef
18.
go back to reference Li C, Yang S (2009) An adaptive learning particle swarm optimizer for function optimization. In: Proceedings of the 2009 IEEE Congress on evolutionary computation, pp 381–388 Li C, Yang S (2009) An adaptive learning particle swarm optimizer for function optimization. In: Proceedings of the 2009 IEEE Congress on evolutionary computation, pp 381–388
19.
go back to reference Li C, Yang S, Nguyen TT (2012) A self-learning particle swarm optimizer for global optimization problems. IEEE Trans Syst Man Cybern Part B Cybern 42(3):627–646CrossRef Li C, Yang S, Nguyen TT (2012) A self-learning particle swarm optimizer for global optimization problems. IEEE Trans Syst Man Cybern Part B Cybern 42(3):627–646CrossRef
20.
go back to reference Sakai S, Takahama T (2014) A comparative study on estimation methods of landscape modality for evolutionary algorithms. In: Kitahara M, Czerkawski C (eds) Legal informatics, economic science and mathematical research. Kyushu University Press, pp 55–80 Sakai S, Takahama T (2014) A comparative study on estimation methods of landscape modality for evolutionary algorithms. In: Kitahara M, Czerkawski C (eds) Legal informatics, economic science and mathematical research. Kyushu University Press, pp 55–80
21.
go back to reference Takahashi R, Yata N, Nagao T (2011) A searching algorithm using features of a solution space and self-organizing maps. Trans Inst Electr Eng Jpn C 131(2):433–441 (in Japanese) Takahashi R, Yata N, Nagao T (2011) A searching algorithm using features of a solution space and self-organizing maps. Trans Inst Electr Eng Jpn C 131(2):433–441 (in Japanese)
22.
go back to reference Sakai S, Takahama T (2012) A comparative study on neighborhood structures for speciation in species-based differential evolution. In: Kitahara M, Czerkawski C (eds) Social systems solutions applied by economic sciences and mathematical solutions. Kyushu University Press, Fukuoka, pp 111–135 Sakai S, Takahama T (2012) A comparative study on neighborhood structures for speciation in species-based differential evolution. In: Kitahara M, Czerkawski C (eds) Social systems solutions applied by economic sciences and mathematical solutions. Kyushu University Press, Fukuoka, pp 111–135
23.
go back to reference Takahama T, Sakai S (2012) Differential evolution with graph-based speciation by competitive Hebbian rules. In: Proceedings of the sixth international conference on genetic and evolutionary computing (ICGEC2012), pp 445–448 Takahama T, Sakai S (2012) Differential evolution with graph-based speciation by competitive Hebbian rules. In: Proceedings of the sixth international conference on genetic and evolutionary computing (ICGEC2012), pp 445–448
24.
go back to reference Gabriel KR, Sokal RR (1969) A new statistical approach to geographic variation analysis. Syst Zool 18:259–270CrossRef Gabriel KR, Sokal RR (1969) A new statistical approach to geographic variation analysis. Syst Zool 18:259–270CrossRef
26.
go back to reference Kirkpatrick DG, Radke JD (1985) A framework for computational morphology. In: Toussaint G (ed) Computational geometry, North-Holland, pp 217–248 Kirkpatrick DG, Radke JD (1985) A framework for computational morphology. In: Toussaint G (ed) Computational geometry, North-Holland, pp 217–248
27.
go back to reference Chakraborty UK (ed) (2008) Advances in differential evolution. Springer, BerlinMATH Chakraborty UK (ed) (2008) Advances in differential evolution. Springer, BerlinMATH
28.
go back to reference Shang YW, Qiu YH (2006) A note on the extended Rosenbrock function. Evolut Comput 14(1):119–126CrossRef Shang YW, Qiu YH (2006) A note on the extended Rosenbrock function. Evolut Comput 14(1):119–126CrossRef
29.
go back to reference Yao X, Liu Y, Lin G (1999) Evolutionary programming made faster. IEEE Trans Evolut Comput 3:82–102CrossRef Yao X, Liu Y, Lin G (1999) Evolutionary programming made faster. IEEE Trans Evolut Comput 3:82–102CrossRef
30.
go back to reference Mendes R, Kennedy J, Neves J (2004) The fully informed particle swarm: simpler, maybe better. IEEE Trans Evolut Comput 8(3):204–210CrossRef Mendes R, Kennedy J, Neves J (2004) The fully informed particle swarm: simpler, maybe better. IEEE Trans Evolut Comput 8(3):204–210CrossRef
31.
go back to reference Ratnaweera A, Halgamuge S, Watson H (2004) Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients. IEEE Trans Evolut Comput 8(3):240–255CrossRef Ratnaweera A, Halgamuge S, Watson H (2004) Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients. IEEE Trans Evolut Comput 8(3):240–255CrossRef
32.
go back to reference Liang J, Suganthan P (2005) Dynamic multi-swarm particle swarm optimizer. In: Proceedings of the IEEE swarm intelligence symposium, pp 124–129 Liang J, Suganthan P (2005) Dynamic multi-swarm particle swarm optimizer. In: Proceedings of the IEEE swarm intelligence symposium, pp 124–129
33.
go back to reference Liang JJ, Qin AK, Suganthan PN, Baskar S (2006) Comprehensive learning particle swarm optimizer for global optimization of multimodal functions. IEEE Trans Evolut Comput 10(3):281–295CrossRef Liang JJ, Qin AK, Suganthan PN, Baskar S (2006) Comprehensive learning particle swarm optimizer for global optimization of multimodal functions. IEEE Trans Evolut Comput 10(3):281–295CrossRef
Metadata
Title
Particle swarm optimization with mutation operations controlled by landscape modality estimation using hill-valley detection
Authors
Tetsuyuki Takahama
Setsuko Sakai
Jun-ichi Kushida
Akira Hara
Publication date
25-07-2016
Publisher
Springer Japan
Published in
Artificial Life and Robotics / Issue 4/2016
Print ISSN: 1433-5298
Electronic ISSN: 1614-7456
DOI
https://doi.org/10.1007/s10015-016-0299-0

Other articles of this Issue 4/2016

Artificial Life and Robotics 4/2016 Go to the issue

Special Feature: Original Article

Aggregation in robot swarms using odometry