Skip to main content
Top

2016 | OriginalPaper | Chapter

8. Particles in Microfluidic Systems: Handling, Characterization, and Applications

Author : T. P. Burg

Published in: Microsystems for Pharmatechnology

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This chapter gives a tour of the fascinating opportunities for handling and characterizing solid particles by microfluidic methods. First, attention will be given to the hydrodynamic, electrical, and magnetic forces which may be used to manipulate suspended particles at small scales. Second, important methods for the detection and characterization that have been proposed in the literature are illustrated and discussed. The third and last part of the chapter will give the reader a sense of the exciting applications of these methods in different fields, in particular flow cytometry, particle synthesis, and bioanalytical measurement. These applications exemplify the subtle invasion of particle-based microfluidics into many areas of the life sciences, pharmaceutical technology, chemistry, and materials science. In the future, the trend towards miniaturization will continue, and we are likely to see an increasing number of technologies and products using some of the principles reviewed here.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Asmolov ES (1999) The inertial lift on a spherical particle in a plane Poiseuille flow at large channel Reynolds number. J Fluid Mech 381:63–87CrossRefMATH Asmolov ES (1999) The inertial lift on a spherical particle in a plane Poiseuille flow at large channel Reynolds number. J Fluid Mech 381:63–87CrossRefMATH
2.
go back to reference Barrett R, Faucon M, Lopez J, Cristobal G, Destremaut F, Dodge A, Guillot P, Laval P, Masselon C, Salmon JB (2006) X-ray microfocussing combined with microfluidics for on-chip X-ray scattering measurements. Lab Chip 6(4):494–499CrossRef Barrett R, Faucon M, Lopez J, Cristobal G, Destremaut F, Dodge A, Guillot P, Laval P, Masselon C, Salmon JB (2006) X-ray microfocussing combined with microfluidics for on-chip X-ray scattering measurements. Lab Chip 6(4):494–499CrossRef
3.
go back to reference Bernabini C, Holmes D, Morgan H (2011) Micro-impedance cytometry for detection and analysis of micron-sized particles and bacteria. Lab Chip 11(3):407–412CrossRef Bernabini C, Holmes D, Morgan H (2011) Micro-impedance cytometry for detection and analysis of micron-sized particles and bacteria. Lab Chip 11(3):407–412CrossRef
4.
go back to reference Bhagat AAS, Kuntaegowdanahalli SS, Papautsky I (2008) Enhanced particle filtration in straight microchannels using shear-modulated inertial migration. Phys Fluids 20(10) Bhagat AAS, Kuntaegowdanahalli SS, Papautsky I (2008) Enhanced particle filtration in straight microchannels using shear-modulated inertial migration. Phys Fluids 20(10)
6.
go back to reference Burg TP, Manalis SR (2003) Suspended microchannel resonators for biomolecular detection. Appl Phys Lett 83(13):2698–2700CrossRef Burg TP, Manalis SR (2003) Suspended microchannel resonators for biomolecular detection. Appl Phys Lett 83(13):2698–2700CrossRef
7.
go back to reference Burg TP, Godin M, Knudsen SM, Shen W, Carlson G, Foster JS, Babcock K, Manalis SR (2007) Weighing of biomolecules, single cells and single nanoparticles in fluid. Nature 446(7139):1066–1069CrossRef Burg TP, Godin M, Knudsen SM, Shen W, Carlson G, Foster JS, Babcock K, Manalis SR (2007) Weighing of biomolecules, single cells and single nanoparticles in fluid. Nature 446(7139):1066–1069CrossRef
8.
go back to reference Chapin SC, Appleyard DC, Pregibon DC, Doyle PS (2011) Rapid microRNA profiling on encoded gel microparticles. Angew Chemie Int Ed 50(10):2289–2293CrossRef Chapin SC, Appleyard DC, Pregibon DC, Doyle PS (2011) Rapid microRNA profiling on encoded gel microparticles. Angew Chemie Int Ed 50(10):2289–2293CrossRef
9.
go back to reference Chapman DL (1913) A contribution to the theory of electrocapillarity. Philos Mag 25(148):475–481CrossRefMATH Chapman DL (1913) A contribution to the theory of electrocapillarity. Philos Mag 25(148):475–481CrossRefMATH
10.
go back to reference Chastek TQ, Beers KL, Amis EJ (2007) Miniaturized dynamic light scattering instrumentation for use in microfluidic applications. Rev Sci Instr 78(7) Chastek TQ, Beers KL, Amis EJ (2007) Miniaturized dynamic light scattering instrumentation for use in microfluidic applications. Rev Sci Instr 78(7)
11.
go back to reference Cheung KC, Di Berardino M, Schade-Kampmann G, Hebeisen M, Pierzchalski A, Bocsi J, Mittag A, Tarnok A (2010) Microfluidic impedance-based flow cytometry. Cytometry A 77A(7):648–666CrossRef Cheung KC, Di Berardino M, Schade-Kampmann G, Hebeisen M, Pierzchalski A, Bocsi J, Mittag A, Tarnok A (2010) Microfluidic impedance-based flow cytometry. Cytometry A 77A(7):648–666CrossRef
12.
go back to reference Chun B, Ladd AJC (2006) Inertial migration of neutrally buoyant particles in a square duct: an investigation of multiple equilibrium positions. Phys Fluids 18(3):031704CrossRef Chun B, Ladd AJC (2006) Inertial migration of neutrally buoyant particles in a square duct: an investigation of multiple equilibrium positions. Phys Fluids 18(3):031704CrossRef
13.
go back to reference Cox RG, Mason SG (1971) Suspended particles in fluid flow through tubes. Annu Rev Fluid Mech 3:291–316CrossRef Cox RG, Mason SG (1971) Suspended particles in fluid flow through tubes. Annu Rev Fluid Mech 3:291–316CrossRef
14.
go back to reference Dannhauser D, Romeo G, Causa F, De Santo I, Netti PA (2014) Multiplex single particle analysis in microfluidics. Analyst 139(20):5239–5246CrossRef Dannhauser D, Romeo G, Causa F, De Santo I, Netti PA (2014) Multiplex single particle analysis in microfluidics. Analyst 139(20):5239–5246CrossRef
15.
go back to reference Destremaut F, Salmon JB, Qi L, Chapel JP (2009) Microfluidics with on-line dynamic light scattering for size measurements. Lab Chip 9(22):3289–3296CrossRef Destremaut F, Salmon JB, Qi L, Chapel JP (2009) Microfluidics with on-line dynamic light scattering for size measurements. Lab Chip 9(22):3289–3296CrossRef
16.
go back to reference Di Carlo D, Irimia D, Tompkins RG, Toner M (2007) Continuous inertial focusing, ordering, and separation of particles in microchannels. Proc Natl Acad Sci U S A 104(48):18892–18897CrossRef Di Carlo D, Irimia D, Tompkins RG, Toner M (2007) Continuous inertial focusing, ordering, and separation of particles in microchannels. Proc Natl Acad Sci U S A 104(48):18892–18897CrossRef
17.
18.
go back to reference Fraikin JL, Teesalu T, McKenney CM, Ruoslahti E, Cleland AN (2011) A high-throughput label-free nanoparticle analyser. Nat Nanotechnol 6(5):308–313CrossRef Fraikin JL, Teesalu T, McKenney CM, Ruoslahti E, Cleland AN (2011) A high-throughput label-free nanoparticle analyser. Nat Nanotechnol 6(5):308–313CrossRef
19.
go back to reference Godin M, Bryan AK, Burg TP, Babcock K, Manalis SR (2007) Measuring the mass, density, and size of particles and cells using a suspended microchannel resonator. Appl Phys Lett 91(12):123121CrossRef Godin M, Bryan AK, Burg TP, Babcock K, Manalis SR (2007) Measuring the mass, density, and size of particles and cells using a suspended microchannel resonator. Appl Phys Lett 91(12):123121CrossRef
20.
go back to reference Gossett DR, Tse HTK, Lee SA, Ying Y, Lindgren AG, Yang OO, Rao JY, Clark AT, Di Carlo D (2012) Hydrodynamic stretching of single cells for large population mechanical phenotyping. Proc Natl Acad Sci U S A 109(20):7630–7635CrossRef Gossett DR, Tse HTK, Lee SA, Ying Y, Lindgren AG, Yang OO, Rao JY, Clark AT, Di Carlo D (2012) Hydrodynamic stretching of single cells for large population mechanical phenotyping. Proc Natl Acad Sci U S A 109(20):7630–7635CrossRef
21.
go back to reference Gouy M (1910) Sur la constitution de la charge électrique à la surface d’un électrolyte. J Phys Theor Appl 9(1):457–468CrossRefMATH Gouy M (1910) Sur la constitution de la charge électrique à la surface d’un électrolyte. J Phys Theor Appl 9(1):457–468CrossRefMATH
22.
go back to reference Greaves ED, Manz A (2005) Toward on-chip X-ray analysis. Lab Chip 5(4):382–391CrossRef Greaves ED, Manz A (2005) Toward on-chip X-ray analysis. Lab Chip 5(4):382–391CrossRef
23.
go back to reference Hansen CL, Classen S, Berger JM, Quake SR (2006) A microfluidic device for kinetic optimization of protein crystallization and in situ structure determination. J Am Chem Soc 128(10):3142–3143CrossRef Hansen CL, Classen S, Berger JM, Quake SR (2006) A microfluidic device for kinetic optimization of protein crystallization and in situ structure determination. J Am Chem Soc 128(10):3142–3143CrossRef
24.
go back to reference Henry DC (1931) The cataphoresis of suspended particles Part I—the equation of cataphoresis. Proc R Soc Lond Contain Papers Math Phys Char 133(821):106–129CrossRefMATH Henry DC (1931) The cataphoresis of suspended particles Part I—the equation of cataphoresis. Proc R Soc Lond Contain Papers Math Phys Char 133(821):106–129CrossRefMATH
25.
go back to reference Ho BP, Leal LG (1974) Inertial migration of rigid spheres in 2-dimensional unidirectional flows. J Fluid Mech 65(2):365–400CrossRefMATH Ho BP, Leal LG (1974) Inertial migration of rigid spheres in 2-dimensional unidirectional flows. J Fluid Mech 65(2):365–400CrossRefMATH
26.
go back to reference Irimajir A, Hanai T, Inouye A (1979) Dielectric theory of multi-stratified shell-model with its application to a lymphoma cell. J Theor Biol 78(2):251–269CrossRef Irimajir A, Hanai T, Inouye A (1979) Dielectric theory of multi-stratified shell-model with its application to a lymphoma cell. J Theor Biol 78(2):251–269CrossRef
27.
go back to reference Jackson JD (1998) Classical electrodynamics. Wiley, New York Jackson JD (1998) Classical electrodynamics. Wiley, New York
28.
go back to reference Jain R, Petri M, Kirschbaum S, Feindt H, Steltenkamp S, Sonnenkalb S, Becker S, Griesinger C, Menzel A, Burg TP, Techert S (2013) X-ray scattering experiments with high-flux X-ray source coupled rapid mixing microchannel device and their potential for high-flux neutron scattering investigations. Eur Phys J E 36(9):109CrossRef Jain R, Petri M, Kirschbaum S, Feindt H, Steltenkamp S, Sonnenkalb S, Becker S, Griesinger C, Menzel A, Burg TP, Techert S (2013) X-ray scattering experiments with high-flux X-ray source coupled rapid mixing microchannel device and their potential for high-flux neutron scattering investigations. Eur Phys J E 36(9):109CrossRef
29.
go back to reference Johnson ME, Landers JP (2004) Fundamentals and practice for ultrasensitive laser-induced fluorescence detection in microanalytical systems. Electrophoresis 25(21–22):3513–3527CrossRef Johnson ME, Landers JP (2004) Fundamentals and practice for ultrasensitive laser-induced fluorescence detection in microanalytical systems. Electrophoresis 25(21–22):3513–3527CrossRef
30.
go back to reference Jones TB, Washizu M (1996) Multipolar dielectrophoretic and electrorotation theory. J Electrostat 37(1–2):121–134CrossRef Jones TB, Washizu M (1996) Multipolar dielectrophoretic and electrorotation theory. J Electrostat 37(1–2):121–134CrossRef
31.
go back to reference Jones TB (2003) Basic theory of dielectrophoresis and electrorotation. IEEE Eng Med Biol Mag 22(6):33–42CrossRef Jones TB (2003) Basic theory of dielectrophoresis and electrorotation. IEEE Eng Med Biol Mag 22(6):33–42CrossRef
32.
go back to reference Jones TB (1995) Electromechanics of particles. Cambridge University Press, CambridgeCrossRef Jones TB (1995) Electromechanics of particles. Cambridge University Press, CambridgeCrossRef
33.
go back to reference Karnik R, Gu F, Basto P, Cannizzaro C, Dean L, Kyei-Manu W, Langer R, Farokhzad OC (2008) Microfluidic platform for controlled synthesis of polymeric nanoparticles. Nano Lett 8(9):2906–2912CrossRef Karnik R, Gu F, Basto P, Cannizzaro C, Dean L, Kyei-Manu W, Langer R, Farokhzad OC (2008) Microfluidic platform for controlled synthesis of polymeric nanoparticles. Nano Lett 8(9):2906–2912CrossRef
34.
go back to reference Lee J, Chunara R, Shen W, Payer K, Babcock K, Burg TP, Manalis SR (2011) Suspended microchannel resonators with piezoresistive sensors. Lab Chip 11(4):645–651CrossRef Lee J, Chunara R, Shen W, Payer K, Babcock K, Burg TP, Manalis SR (2011) Suspended microchannel resonators with piezoresistive sensors. Lab Chip 11(4):645–651CrossRef
35.
go back to reference Lee J, Shen WJ, Payer K, Burg TP, Manalis SR (2010) Toward attogram mass measurements in solution with suspended nanochannel resonators. Nano Lett 10(7):2537–2542CrossRef Lee J, Shen WJ, Payer K, Burg TP, Manalis SR (2010) Toward attogram mass measurements in solution with suspended nanochannel resonators. Nano Lett 10(7):2537–2542CrossRef
36.
go back to reference LesliePelecky DL, Rieke RD (1996) Magnetic properties of nanostructured materials. Chem Mater 8(8):1770–1783CrossRef LesliePelecky DL, Rieke RD (1996) Magnetic properties of nanostructured materials. Chem Mater 8(8):1770–1783CrossRef
37.
go back to reference Modena MM, Wang Y, Riedel D, Burg TP (2014) Resolution enhancement of suspended microchannel resonators for weighing of biomolecular complexes in solution. Lab Chip 14(2):342–350CrossRef Modena MM, Wang Y, Riedel D, Burg TP (2014) Resolution enhancement of suspended microchannel resonators for weighing of biomolecular complexes in solution. Lab Chip 14(2):342–350CrossRef
38.
go back to reference Moschou P, de Croon MHJM, van der Schaaf J, Schouten JC (2014) Advances in continuous crystallization: toward microfluidic systems. Rev Chem Eng 30(2):127–138CrossRef Moschou P, de Croon MHJM, van der Schaaf J, Schouten JC (2014) Advances in continuous crystallization: toward microfluidic systems. Rev Chem Eng 30(2):127–138CrossRef
39.
go back to reference Olcum S, Cermak N, Wasserman SC, Christine KS, Atsumi H, Payer KR, Shen WJ, Lee JC, Belcher AM, Bhatia SN, Manalis SR (2014) Weighing nanoparticles in solution at the attogram scale. Proc Natl Acad Sci U S A 111(4):1310–1315CrossRef Olcum S, Cermak N, Wasserman SC, Christine KS, Atsumi H, Payer KR, Shen WJ, Lee JC, Belcher AM, Bhatia SN, Manalis SR (2014) Weighing nanoparticles in solution at the attogram scale. Proc Natl Acad Sci U S A 111(4):1310–1315CrossRef
40.
go back to reference Pamme N, Koyama R, Manz A (2003) Counting and sizing of particles and particle agglomerates in a microfluidic device using laser light scattering: application to a particle-enhanced immunoassay. Lab Chip 3(3):187–192CrossRef Pamme N, Koyama R, Manz A (2003) Counting and sizing of particles and particle agglomerates in a microfluidic device using laser light scattering: application to a particle-enhanced immunoassay. Lab Chip 3(3):187–192CrossRef
41.
go back to reference Pierzchalski A, Hebeisen M, Mittag A, Di Berardino M, Tarnok A (2010) Label-free single cell analysis with a chip-based impedance flow cytometer. Imaging Manipulation Analys Biomol Cells Tissues VIII 7568 Pierzchalski A, Hebeisen M, Mittag A, Di Berardino M, Tarnok A (2010) Label-free single cell analysis with a chip-based impedance flow cytometer. Imaging Manipulation Analys Biomol Cells Tissues VIII 7568
42.
go back to reference Piyasena ME, Graves SW (2014) The intersection of flow cytometry with microfluidics and microfabrication. Lab Chip 14(6):1044–1059CrossRef Piyasena ME, Graves SW (2014) The intersection of flow cytometry with microfluidics and microfabrication. Lab Chip 14(6):1044–1059CrossRef
43.
go back to reference Pohl HA (1951) The motion and precipitation of suspensoids in divergent electric fields. J Appl Phys 22(7):869–871CrossRef Pohl HA (1951) The motion and precipitation of suspensoids in divergent electric fields. J Appl Phys 22(7):869–871CrossRef
44.
go back to reference Probstein RF (1989) Solutions of charged macromolecules and particles. In: Probstein RF (ed) Physicochemical hydrodynamics. Butterworth-Heinemann, Boston, pp 201–225CrossRef Probstein RF (1989) Solutions of charged macromolecules and particles. In: Probstein RF (ed) Physicochemical hydrodynamics. Butterworth-Heinemann, Boston, pp 201–225CrossRef
45.
go back to reference Schade-Kampmann G, Huwiler A, Hebeisen M, Hessler T, Di Berardino M (2008) On-chip non-invasive and label-free cell discrimination by impedance spectroscopy. Cell Prolif 41(5):830–840CrossRef Schade-Kampmann G, Huwiler A, Hebeisen M, Hessler T, Di Berardino M (2008) On-chip non-invasive and label-free cell discrimination by impedance spectroscopy. Cell Prolif 41(5):830–840CrossRef
46.
go back to reference Schiro PG, Gadd JC, Yen GS, Chiu DT (2012) High-throughput fluorescence-activated nanoscale subcellular sorter with single-molecule sensitivity. J Phys Chem B 116(35):10490–10495CrossRef Schiro PG, Gadd JC, Yen GS, Chiu DT (2012) High-throughput fluorescence-activated nanoscale subcellular sorter with single-molecule sensitivity. J Phys Chem B 116(35):10490–10495CrossRef
47.
48.
go back to reference Segre G, Silberberg A (1961) Radial particle displacements in Poiseuille flow of suspensions. Nature 189(476):209–210CrossRef Segre G, Silberberg A (1961) Radial particle displacements in Poiseuille flow of suspensions. Nature 189(476):209–210CrossRef
49.
go back to reference Shevkoplyas SS, Siegel AC, Westervelt RM, Prentiss MG, Whitesides GM (2007) The force acting on a superparamagnetic bead due to an applied magnetic field. Lab Chip 7(10):1294–1302CrossRef Shevkoplyas SS, Siegel AC, Westervelt RM, Prentiss MG, Whitesides GM (2007) The force acting on a superparamagnetic bead due to an applied magnetic field. Lab Chip 7(10):1294–1302CrossRef
50.
go back to reference Son S, Tzur A, Weng Y, Jorgensen P, Kim J, Kirschner MW, Manalis SR (2012) Direct observation of mammalian cell growth and size regulation. Nat Meth 9(9):910–912CrossRef Son S, Tzur A, Weng Y, Jorgensen P, Kim J, Kirschner MW, Manalis SR (2012) Direct observation of mammalian cell growth and size regulation. Nat Meth 9(9):910–912CrossRef
51.
go back to reference Staben ME, Davis RH (2005) Particle transport in Poiseuille flow in narrow channels. Int J Multiphase Flow 31(5):529–547CrossRefMATH Staben ME, Davis RH (2005) Particle transport in Poiseuille flow in narrow channels. Int J Multiphase Flow 31(5):529–547CrossRefMATH
52.
go back to reference Staben ME, Zinchenko AZ, Davis RH (2003) Motion of a particle between two parallel plane walls in low-Reynolds-number Poiseuille flow. Phys Fluids 15(6):1711–1733CrossRef Staben ME, Zinchenko AZ, Davis RH (2003) Motion of a particle between two parallel plane walls in low-Reynolds-number Poiseuille flow. Phys Fluids 15(6):1711–1733CrossRef
53.
go back to reference Thoroddsen ST, Etoh TG, Takehara K (2008) High-speed imaging of drops and bubbles. Annu Rev Fluid Mech 40:257–285CrossRefMathSciNet Thoroddsen ST, Etoh TG, Takehara K (2008) High-speed imaging of drops and bubbles. Annu Rev Fluid Mech 40:257–285CrossRefMathSciNet
54.
go back to reference Toft KN, Vestergaard B, Nielsen SS, Snakenborg D, Jeppesen MG, Jacobsen JK, Arleth L, Kutter JP (2008) High-throughput Small Angle X-ray Scattering from proteins in solution using a microfluidic front-end. Anal Chem 80(10):3648–3654CrossRef Toft KN, Vestergaard B, Nielsen SS, Snakenborg D, Jeppesen MG, Jacobsen JK, Arleth L, Kutter JP (2008) High-throughput Small Angle X-ray Scattering from proteins in solution using a microfluidic front-end. Anal Chem 80(10):3648–3654CrossRef
55.
go back to reference Vig AL, Haldrup K, Enevoldsen N, Thilsted AH, Eriksen J, Kristensen A, Feidenhans’l R, Nielsen MM (2009) Windowless microfluidic platform based on capillary burst valves for high intensity X-ray measurements. Rev Sci Instr 80(11):115114-1–6CrossRef Vig AL, Haldrup K, Enevoldsen N, Thilsted AH, Eriksen J, Kristensen A, Feidenhans’l R, Nielsen MM (2009) Windowless microfluidic platform based on capillary burst valves for high intensity X-ray measurements. Rev Sci Instr 80(11):115114-1–6CrossRef
56.
go back to reference Wlodkowic D, Darzynkiewicz Z (2011) Rise of the micromachines: microfluidics and the future of cytometry. Recent Adv Cytom Part A 102:105–125 Wlodkowic D, Darzynkiewicz Z (2011) Rise of the micromachines: microfluidics and the future of cytometry. Recent Adv Cytom Part A 102:105–125
57.
go back to reference Zheng B, Tice JD, Roach LS, Ismagilov RF (2004) A droplet-based, composite PDMS/glass capillary microfluidic system for evaluating protein crystallization conditions by microbatch and vapor-diffusion methods with on-chip X-ray diffraction. Angew Chemie Int Ed 43(19):2508–2511CrossRef Zheng B, Tice JD, Roach LS, Ismagilov RF (2004) A droplet-based, composite PDMS/glass capillary microfluidic system for evaluating protein crystallization conditions by microbatch and vapor-diffusion methods with on-chip X-ray diffraction. Angew Chemie Int Ed 43(19):2508–2511CrossRef
Metadata
Title
Particles in Microfluidic Systems: Handling, Characterization, and Applications
Author
T. P. Burg
Copyright Year
2016
DOI
https://doi.org/10.1007/978-3-319-26920-7_8