Skip to main content

2016 | OriginalPaper | Buchkapitel

8. Particles in Microfluidic Systems: Handling, Characterization, and Applications

verfasst von : T. P. Burg

Erschienen in: Microsystems for Pharmatechnology

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This chapter gives a tour of the fascinating opportunities for handling and characterizing solid particles by microfluidic methods. First, attention will be given to the hydrodynamic, electrical, and magnetic forces which may be used to manipulate suspended particles at small scales. Second, important methods for the detection and characterization that have been proposed in the literature are illustrated and discussed. The third and last part of the chapter will give the reader a sense of the exciting applications of these methods in different fields, in particular flow cytometry, particle synthesis, and bioanalytical measurement. These applications exemplify the subtle invasion of particle-based microfluidics into many areas of the life sciences, pharmaceutical technology, chemistry, and materials science. In the future, the trend towards miniaturization will continue, and we are likely to see an increasing number of technologies and products using some of the principles reviewed here.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Asmolov ES (1999) The inertial lift on a spherical particle in a plane Poiseuille flow at large channel Reynolds number. J Fluid Mech 381:63–87CrossRefMATH Asmolov ES (1999) The inertial lift on a spherical particle in a plane Poiseuille flow at large channel Reynolds number. J Fluid Mech 381:63–87CrossRefMATH
2.
Zurück zum Zitat Barrett R, Faucon M, Lopez J, Cristobal G, Destremaut F, Dodge A, Guillot P, Laval P, Masselon C, Salmon JB (2006) X-ray microfocussing combined with microfluidics for on-chip X-ray scattering measurements. Lab Chip 6(4):494–499CrossRef Barrett R, Faucon M, Lopez J, Cristobal G, Destremaut F, Dodge A, Guillot P, Laval P, Masselon C, Salmon JB (2006) X-ray microfocussing combined with microfluidics for on-chip X-ray scattering measurements. Lab Chip 6(4):494–499CrossRef
3.
Zurück zum Zitat Bernabini C, Holmes D, Morgan H (2011) Micro-impedance cytometry for detection and analysis of micron-sized particles and bacteria. Lab Chip 11(3):407–412CrossRef Bernabini C, Holmes D, Morgan H (2011) Micro-impedance cytometry for detection and analysis of micron-sized particles and bacteria. Lab Chip 11(3):407–412CrossRef
4.
Zurück zum Zitat Bhagat AAS, Kuntaegowdanahalli SS, Papautsky I (2008) Enhanced particle filtration in straight microchannels using shear-modulated inertial migration. Phys Fluids 20(10) Bhagat AAS, Kuntaegowdanahalli SS, Papautsky I (2008) Enhanced particle filtration in straight microchannels using shear-modulated inertial migration. Phys Fluids 20(10)
5.
6.
Zurück zum Zitat Burg TP, Manalis SR (2003) Suspended microchannel resonators for biomolecular detection. Appl Phys Lett 83(13):2698–2700CrossRef Burg TP, Manalis SR (2003) Suspended microchannel resonators for biomolecular detection. Appl Phys Lett 83(13):2698–2700CrossRef
7.
Zurück zum Zitat Burg TP, Godin M, Knudsen SM, Shen W, Carlson G, Foster JS, Babcock K, Manalis SR (2007) Weighing of biomolecules, single cells and single nanoparticles in fluid. Nature 446(7139):1066–1069CrossRef Burg TP, Godin M, Knudsen SM, Shen W, Carlson G, Foster JS, Babcock K, Manalis SR (2007) Weighing of biomolecules, single cells and single nanoparticles in fluid. Nature 446(7139):1066–1069CrossRef
8.
Zurück zum Zitat Chapin SC, Appleyard DC, Pregibon DC, Doyle PS (2011) Rapid microRNA profiling on encoded gel microparticles. Angew Chemie Int Ed 50(10):2289–2293CrossRef Chapin SC, Appleyard DC, Pregibon DC, Doyle PS (2011) Rapid microRNA profiling on encoded gel microparticles. Angew Chemie Int Ed 50(10):2289–2293CrossRef
9.
Zurück zum Zitat Chapman DL (1913) A contribution to the theory of electrocapillarity. Philos Mag 25(148):475–481CrossRefMATH Chapman DL (1913) A contribution to the theory of electrocapillarity. Philos Mag 25(148):475–481CrossRefMATH
10.
Zurück zum Zitat Chastek TQ, Beers KL, Amis EJ (2007) Miniaturized dynamic light scattering instrumentation for use in microfluidic applications. Rev Sci Instr 78(7) Chastek TQ, Beers KL, Amis EJ (2007) Miniaturized dynamic light scattering instrumentation for use in microfluidic applications. Rev Sci Instr 78(7)
11.
Zurück zum Zitat Cheung KC, Di Berardino M, Schade-Kampmann G, Hebeisen M, Pierzchalski A, Bocsi J, Mittag A, Tarnok A (2010) Microfluidic impedance-based flow cytometry. Cytometry A 77A(7):648–666CrossRef Cheung KC, Di Berardino M, Schade-Kampmann G, Hebeisen M, Pierzchalski A, Bocsi J, Mittag A, Tarnok A (2010) Microfluidic impedance-based flow cytometry. Cytometry A 77A(7):648–666CrossRef
12.
Zurück zum Zitat Chun B, Ladd AJC (2006) Inertial migration of neutrally buoyant particles in a square duct: an investigation of multiple equilibrium positions. Phys Fluids 18(3):031704CrossRef Chun B, Ladd AJC (2006) Inertial migration of neutrally buoyant particles in a square duct: an investigation of multiple equilibrium positions. Phys Fluids 18(3):031704CrossRef
13.
Zurück zum Zitat Cox RG, Mason SG (1971) Suspended particles in fluid flow through tubes. Annu Rev Fluid Mech 3:291–316CrossRef Cox RG, Mason SG (1971) Suspended particles in fluid flow through tubes. Annu Rev Fluid Mech 3:291–316CrossRef
14.
Zurück zum Zitat Dannhauser D, Romeo G, Causa F, De Santo I, Netti PA (2014) Multiplex single particle analysis in microfluidics. Analyst 139(20):5239–5246CrossRef Dannhauser D, Romeo G, Causa F, De Santo I, Netti PA (2014) Multiplex single particle analysis in microfluidics. Analyst 139(20):5239–5246CrossRef
15.
Zurück zum Zitat Destremaut F, Salmon JB, Qi L, Chapel JP (2009) Microfluidics with on-line dynamic light scattering for size measurements. Lab Chip 9(22):3289–3296CrossRef Destremaut F, Salmon JB, Qi L, Chapel JP (2009) Microfluidics with on-line dynamic light scattering for size measurements. Lab Chip 9(22):3289–3296CrossRef
16.
Zurück zum Zitat Di Carlo D, Irimia D, Tompkins RG, Toner M (2007) Continuous inertial focusing, ordering, and separation of particles in microchannels. Proc Natl Acad Sci U S A 104(48):18892–18897CrossRef Di Carlo D, Irimia D, Tompkins RG, Toner M (2007) Continuous inertial focusing, ordering, and separation of particles in microchannels. Proc Natl Acad Sci U S A 104(48):18892–18897CrossRef
17.
18.
Zurück zum Zitat Fraikin JL, Teesalu T, McKenney CM, Ruoslahti E, Cleland AN (2011) A high-throughput label-free nanoparticle analyser. Nat Nanotechnol 6(5):308–313CrossRef Fraikin JL, Teesalu T, McKenney CM, Ruoslahti E, Cleland AN (2011) A high-throughput label-free nanoparticle analyser. Nat Nanotechnol 6(5):308–313CrossRef
19.
Zurück zum Zitat Godin M, Bryan AK, Burg TP, Babcock K, Manalis SR (2007) Measuring the mass, density, and size of particles and cells using a suspended microchannel resonator. Appl Phys Lett 91(12):123121CrossRef Godin M, Bryan AK, Burg TP, Babcock K, Manalis SR (2007) Measuring the mass, density, and size of particles and cells using a suspended microchannel resonator. Appl Phys Lett 91(12):123121CrossRef
20.
Zurück zum Zitat Gossett DR, Tse HTK, Lee SA, Ying Y, Lindgren AG, Yang OO, Rao JY, Clark AT, Di Carlo D (2012) Hydrodynamic stretching of single cells for large population mechanical phenotyping. Proc Natl Acad Sci U S A 109(20):7630–7635CrossRef Gossett DR, Tse HTK, Lee SA, Ying Y, Lindgren AG, Yang OO, Rao JY, Clark AT, Di Carlo D (2012) Hydrodynamic stretching of single cells for large population mechanical phenotyping. Proc Natl Acad Sci U S A 109(20):7630–7635CrossRef
21.
Zurück zum Zitat Gouy M (1910) Sur la constitution de la charge électrique à la surface d’un électrolyte. J Phys Theor Appl 9(1):457–468CrossRefMATH Gouy M (1910) Sur la constitution de la charge électrique à la surface d’un électrolyte. J Phys Theor Appl 9(1):457–468CrossRefMATH
22.
Zurück zum Zitat Greaves ED, Manz A (2005) Toward on-chip X-ray analysis. Lab Chip 5(4):382–391CrossRef Greaves ED, Manz A (2005) Toward on-chip X-ray analysis. Lab Chip 5(4):382–391CrossRef
23.
Zurück zum Zitat Hansen CL, Classen S, Berger JM, Quake SR (2006) A microfluidic device for kinetic optimization of protein crystallization and in situ structure determination. J Am Chem Soc 128(10):3142–3143CrossRef Hansen CL, Classen S, Berger JM, Quake SR (2006) A microfluidic device for kinetic optimization of protein crystallization and in situ structure determination. J Am Chem Soc 128(10):3142–3143CrossRef
24.
Zurück zum Zitat Henry DC (1931) The cataphoresis of suspended particles Part I—the equation of cataphoresis. Proc R Soc Lond Contain Papers Math Phys Char 133(821):106–129CrossRefMATH Henry DC (1931) The cataphoresis of suspended particles Part I—the equation of cataphoresis. Proc R Soc Lond Contain Papers Math Phys Char 133(821):106–129CrossRefMATH
25.
Zurück zum Zitat Ho BP, Leal LG (1974) Inertial migration of rigid spheres in 2-dimensional unidirectional flows. J Fluid Mech 65(2):365–400CrossRefMATH Ho BP, Leal LG (1974) Inertial migration of rigid spheres in 2-dimensional unidirectional flows. J Fluid Mech 65(2):365–400CrossRefMATH
26.
Zurück zum Zitat Irimajir A, Hanai T, Inouye A (1979) Dielectric theory of multi-stratified shell-model with its application to a lymphoma cell. J Theor Biol 78(2):251–269CrossRef Irimajir A, Hanai T, Inouye A (1979) Dielectric theory of multi-stratified shell-model with its application to a lymphoma cell. J Theor Biol 78(2):251–269CrossRef
27.
Zurück zum Zitat Jackson JD (1998) Classical electrodynamics. Wiley, New York Jackson JD (1998) Classical electrodynamics. Wiley, New York
28.
Zurück zum Zitat Jain R, Petri M, Kirschbaum S, Feindt H, Steltenkamp S, Sonnenkalb S, Becker S, Griesinger C, Menzel A, Burg TP, Techert S (2013) X-ray scattering experiments with high-flux X-ray source coupled rapid mixing microchannel device and their potential for high-flux neutron scattering investigations. Eur Phys J E 36(9):109CrossRef Jain R, Petri M, Kirschbaum S, Feindt H, Steltenkamp S, Sonnenkalb S, Becker S, Griesinger C, Menzel A, Burg TP, Techert S (2013) X-ray scattering experiments with high-flux X-ray source coupled rapid mixing microchannel device and their potential for high-flux neutron scattering investigations. Eur Phys J E 36(9):109CrossRef
29.
Zurück zum Zitat Johnson ME, Landers JP (2004) Fundamentals and practice for ultrasensitive laser-induced fluorescence detection in microanalytical systems. Electrophoresis 25(21–22):3513–3527CrossRef Johnson ME, Landers JP (2004) Fundamentals and practice for ultrasensitive laser-induced fluorescence detection in microanalytical systems. Electrophoresis 25(21–22):3513–3527CrossRef
30.
Zurück zum Zitat Jones TB, Washizu M (1996) Multipolar dielectrophoretic and electrorotation theory. J Electrostat 37(1–2):121–134CrossRef Jones TB, Washizu M (1996) Multipolar dielectrophoretic and electrorotation theory. J Electrostat 37(1–2):121–134CrossRef
31.
Zurück zum Zitat Jones TB (2003) Basic theory of dielectrophoresis and electrorotation. IEEE Eng Med Biol Mag 22(6):33–42CrossRef Jones TB (2003) Basic theory of dielectrophoresis and electrorotation. IEEE Eng Med Biol Mag 22(6):33–42CrossRef
32.
Zurück zum Zitat Jones TB (1995) Electromechanics of particles. Cambridge University Press, CambridgeCrossRef Jones TB (1995) Electromechanics of particles. Cambridge University Press, CambridgeCrossRef
33.
Zurück zum Zitat Karnik R, Gu F, Basto P, Cannizzaro C, Dean L, Kyei-Manu W, Langer R, Farokhzad OC (2008) Microfluidic platform for controlled synthesis of polymeric nanoparticles. Nano Lett 8(9):2906–2912CrossRef Karnik R, Gu F, Basto P, Cannizzaro C, Dean L, Kyei-Manu W, Langer R, Farokhzad OC (2008) Microfluidic platform for controlled synthesis of polymeric nanoparticles. Nano Lett 8(9):2906–2912CrossRef
34.
Zurück zum Zitat Lee J, Chunara R, Shen W, Payer K, Babcock K, Burg TP, Manalis SR (2011) Suspended microchannel resonators with piezoresistive sensors. Lab Chip 11(4):645–651CrossRef Lee J, Chunara R, Shen W, Payer K, Babcock K, Burg TP, Manalis SR (2011) Suspended microchannel resonators with piezoresistive sensors. Lab Chip 11(4):645–651CrossRef
35.
Zurück zum Zitat Lee J, Shen WJ, Payer K, Burg TP, Manalis SR (2010) Toward attogram mass measurements in solution with suspended nanochannel resonators. Nano Lett 10(7):2537–2542CrossRef Lee J, Shen WJ, Payer K, Burg TP, Manalis SR (2010) Toward attogram mass measurements in solution with suspended nanochannel resonators. Nano Lett 10(7):2537–2542CrossRef
36.
Zurück zum Zitat LesliePelecky DL, Rieke RD (1996) Magnetic properties of nanostructured materials. Chem Mater 8(8):1770–1783CrossRef LesliePelecky DL, Rieke RD (1996) Magnetic properties of nanostructured materials. Chem Mater 8(8):1770–1783CrossRef
37.
Zurück zum Zitat Modena MM, Wang Y, Riedel D, Burg TP (2014) Resolution enhancement of suspended microchannel resonators for weighing of biomolecular complexes in solution. Lab Chip 14(2):342–350CrossRef Modena MM, Wang Y, Riedel D, Burg TP (2014) Resolution enhancement of suspended microchannel resonators for weighing of biomolecular complexes in solution. Lab Chip 14(2):342–350CrossRef
38.
Zurück zum Zitat Moschou P, de Croon MHJM, van der Schaaf J, Schouten JC (2014) Advances in continuous crystallization: toward microfluidic systems. Rev Chem Eng 30(2):127–138CrossRef Moschou P, de Croon MHJM, van der Schaaf J, Schouten JC (2014) Advances in continuous crystallization: toward microfluidic systems. Rev Chem Eng 30(2):127–138CrossRef
39.
Zurück zum Zitat Olcum S, Cermak N, Wasserman SC, Christine KS, Atsumi H, Payer KR, Shen WJ, Lee JC, Belcher AM, Bhatia SN, Manalis SR (2014) Weighing nanoparticles in solution at the attogram scale. Proc Natl Acad Sci U S A 111(4):1310–1315CrossRef Olcum S, Cermak N, Wasserman SC, Christine KS, Atsumi H, Payer KR, Shen WJ, Lee JC, Belcher AM, Bhatia SN, Manalis SR (2014) Weighing nanoparticles in solution at the attogram scale. Proc Natl Acad Sci U S A 111(4):1310–1315CrossRef
40.
Zurück zum Zitat Pamme N, Koyama R, Manz A (2003) Counting and sizing of particles and particle agglomerates in a microfluidic device using laser light scattering: application to a particle-enhanced immunoassay. Lab Chip 3(3):187–192CrossRef Pamme N, Koyama R, Manz A (2003) Counting and sizing of particles and particle agglomerates in a microfluidic device using laser light scattering: application to a particle-enhanced immunoassay. Lab Chip 3(3):187–192CrossRef
41.
Zurück zum Zitat Pierzchalski A, Hebeisen M, Mittag A, Di Berardino M, Tarnok A (2010) Label-free single cell analysis with a chip-based impedance flow cytometer. Imaging Manipulation Analys Biomol Cells Tissues VIII 7568 Pierzchalski A, Hebeisen M, Mittag A, Di Berardino M, Tarnok A (2010) Label-free single cell analysis with a chip-based impedance flow cytometer. Imaging Manipulation Analys Biomol Cells Tissues VIII 7568
42.
Zurück zum Zitat Piyasena ME, Graves SW (2014) The intersection of flow cytometry with microfluidics and microfabrication. Lab Chip 14(6):1044–1059CrossRef Piyasena ME, Graves SW (2014) The intersection of flow cytometry with microfluidics and microfabrication. Lab Chip 14(6):1044–1059CrossRef
43.
Zurück zum Zitat Pohl HA (1951) The motion and precipitation of suspensoids in divergent electric fields. J Appl Phys 22(7):869–871CrossRef Pohl HA (1951) The motion and precipitation of suspensoids in divergent electric fields. J Appl Phys 22(7):869–871CrossRef
44.
Zurück zum Zitat Probstein RF (1989) Solutions of charged macromolecules and particles. In: Probstein RF (ed) Physicochemical hydrodynamics. Butterworth-Heinemann, Boston, pp 201–225CrossRef Probstein RF (1989) Solutions of charged macromolecules and particles. In: Probstein RF (ed) Physicochemical hydrodynamics. Butterworth-Heinemann, Boston, pp 201–225CrossRef
45.
Zurück zum Zitat Schade-Kampmann G, Huwiler A, Hebeisen M, Hessler T, Di Berardino M (2008) On-chip non-invasive and label-free cell discrimination by impedance spectroscopy. Cell Prolif 41(5):830–840CrossRef Schade-Kampmann G, Huwiler A, Hebeisen M, Hessler T, Di Berardino M (2008) On-chip non-invasive and label-free cell discrimination by impedance spectroscopy. Cell Prolif 41(5):830–840CrossRef
46.
Zurück zum Zitat Schiro PG, Gadd JC, Yen GS, Chiu DT (2012) High-throughput fluorescence-activated nanoscale subcellular sorter with single-molecule sensitivity. J Phys Chem B 116(35):10490–10495CrossRef Schiro PG, Gadd JC, Yen GS, Chiu DT (2012) High-throughput fluorescence-activated nanoscale subcellular sorter with single-molecule sensitivity. J Phys Chem B 116(35):10490–10495CrossRef
47.
48.
Zurück zum Zitat Segre G, Silberberg A (1961) Radial particle displacements in Poiseuille flow of suspensions. Nature 189(476):209–210CrossRef Segre G, Silberberg A (1961) Radial particle displacements in Poiseuille flow of suspensions. Nature 189(476):209–210CrossRef
49.
Zurück zum Zitat Shevkoplyas SS, Siegel AC, Westervelt RM, Prentiss MG, Whitesides GM (2007) The force acting on a superparamagnetic bead due to an applied magnetic field. Lab Chip 7(10):1294–1302CrossRef Shevkoplyas SS, Siegel AC, Westervelt RM, Prentiss MG, Whitesides GM (2007) The force acting on a superparamagnetic bead due to an applied magnetic field. Lab Chip 7(10):1294–1302CrossRef
50.
Zurück zum Zitat Son S, Tzur A, Weng Y, Jorgensen P, Kim J, Kirschner MW, Manalis SR (2012) Direct observation of mammalian cell growth and size regulation. Nat Meth 9(9):910–912CrossRef Son S, Tzur A, Weng Y, Jorgensen P, Kim J, Kirschner MW, Manalis SR (2012) Direct observation of mammalian cell growth and size regulation. Nat Meth 9(9):910–912CrossRef
51.
Zurück zum Zitat Staben ME, Davis RH (2005) Particle transport in Poiseuille flow in narrow channels. Int J Multiphase Flow 31(5):529–547CrossRefMATH Staben ME, Davis RH (2005) Particle transport in Poiseuille flow in narrow channels. Int J Multiphase Flow 31(5):529–547CrossRefMATH
52.
Zurück zum Zitat Staben ME, Zinchenko AZ, Davis RH (2003) Motion of a particle between two parallel plane walls in low-Reynolds-number Poiseuille flow. Phys Fluids 15(6):1711–1733CrossRef Staben ME, Zinchenko AZ, Davis RH (2003) Motion of a particle between two parallel plane walls in low-Reynolds-number Poiseuille flow. Phys Fluids 15(6):1711–1733CrossRef
53.
Zurück zum Zitat Thoroddsen ST, Etoh TG, Takehara K (2008) High-speed imaging of drops and bubbles. Annu Rev Fluid Mech 40:257–285CrossRefMathSciNet Thoroddsen ST, Etoh TG, Takehara K (2008) High-speed imaging of drops and bubbles. Annu Rev Fluid Mech 40:257–285CrossRefMathSciNet
54.
Zurück zum Zitat Toft KN, Vestergaard B, Nielsen SS, Snakenborg D, Jeppesen MG, Jacobsen JK, Arleth L, Kutter JP (2008) High-throughput Small Angle X-ray Scattering from proteins in solution using a microfluidic front-end. Anal Chem 80(10):3648–3654CrossRef Toft KN, Vestergaard B, Nielsen SS, Snakenborg D, Jeppesen MG, Jacobsen JK, Arleth L, Kutter JP (2008) High-throughput Small Angle X-ray Scattering from proteins in solution using a microfluidic front-end. Anal Chem 80(10):3648–3654CrossRef
55.
Zurück zum Zitat Vig AL, Haldrup K, Enevoldsen N, Thilsted AH, Eriksen J, Kristensen A, Feidenhans’l R, Nielsen MM (2009) Windowless microfluidic platform based on capillary burst valves for high intensity X-ray measurements. Rev Sci Instr 80(11):115114-1–6CrossRef Vig AL, Haldrup K, Enevoldsen N, Thilsted AH, Eriksen J, Kristensen A, Feidenhans’l R, Nielsen MM (2009) Windowless microfluidic platform based on capillary burst valves for high intensity X-ray measurements. Rev Sci Instr 80(11):115114-1–6CrossRef
56.
Zurück zum Zitat Wlodkowic D, Darzynkiewicz Z (2011) Rise of the micromachines: microfluidics and the future of cytometry. Recent Adv Cytom Part A 102:105–125 Wlodkowic D, Darzynkiewicz Z (2011) Rise of the micromachines: microfluidics and the future of cytometry. Recent Adv Cytom Part A 102:105–125
57.
Zurück zum Zitat Zheng B, Tice JD, Roach LS, Ismagilov RF (2004) A droplet-based, composite PDMS/glass capillary microfluidic system for evaluating protein crystallization conditions by microbatch and vapor-diffusion methods with on-chip X-ray diffraction. Angew Chemie Int Ed 43(19):2508–2511CrossRef Zheng B, Tice JD, Roach LS, Ismagilov RF (2004) A droplet-based, composite PDMS/glass capillary microfluidic system for evaluating protein crystallization conditions by microbatch and vapor-diffusion methods with on-chip X-ray diffraction. Angew Chemie Int Ed 43(19):2508–2511CrossRef
Metadaten
Titel
Particles in Microfluidic Systems: Handling, Characterization, and Applications
verfasst von
T. P. Burg
Copyright-Jahr
2016
DOI
https://doi.org/10.1007/978-3-319-26920-7_8

Neuer Inhalt