Skip to main content
Top
Published in: Archive of Applied Mechanics 2/2020

12-10-2019 | Original

Passive vibration suppression of plate using multiple optimal dynamic vibration absorbers

Authors: M. Ari, R. T. Faal

Published in: Archive of Applied Mechanics | Issue 2/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In the present paper, the optimization problem of the dynamic vibration absorbers (DVAs) for suppressing vibrations in thin plates within the wide frequency band is investigated. It is considered that the plate has simply supported edges and is subjected to a concentrated harmonic force. The vibration suppression is accomplished by the implementation of multiple mass–spring absorbers in order to minimize the plate deflection at the natural frequencies of the plate without absorbers. The governing equations of the plate equipped with DVAs for both isotropic and FG plates are derived and solved numerically and analytically. The formulation of the problem is capable of optimizing the \(L_{2}\) norm of the plate deflection at the wide frequency band with respect to mass, stiffness and position of each absorber attachment point. In this study, the possibility of simultaneous absorption of one or multiple natural frequencies of the plate without any absorbers is also studied. Some numerical results are also presented.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Sun, J.Q., Jolly, M.R., Norris, M.A.: Passive, adaptive and active tuned vibration absorbers—a survey. J. Mech. Des. 117, 234–242 (1995) Sun, J.Q., Jolly, M.R., Norris, M.A.: Passive, adaptive and active tuned vibration absorbers—a survey. J. Mech. Des. 117, 234–242 (1995)
2.
go back to reference Ishida, Y.: Recent development of the passive vibration control method. Mech. Syst. Signal Process. 29, 2–18 (2012) Ishida, Y.: Recent development of the passive vibration control method. Mech. Syst. Signal Process. 29, 2–18 (2012)
3.
go back to reference Kolovsky, M.Z.: Nonlinear Dynamics of Active and Passive Systems of Vibration Protection. Springer, Berlin (2013) Kolovsky, M.Z.: Nonlinear Dynamics of Active and Passive Systems of Vibration Protection. Springer, Berlin (2013)
4.
go back to reference Mahadevaswamy, P., Suresh, B.S.: Optimal mass ratio of vibratory flap for vibration control of clamped rectangular plate. Ain Shams Eng. J. 7, 335–345 (2016) Mahadevaswamy, P., Suresh, B.S.: Optimal mass ratio of vibratory flap for vibration control of clamped rectangular plate. Ain Shams Eng. J. 7, 335–345 (2016)
5.
go back to reference Megahed, S.M., El-Razik, A.K.A.: Vibration control of two degrees of freedom system using variable inertia vibration absorbers: modeling and simulation. J. Sound Vib. 329, 4841–4865 (2010) Megahed, S.M., El-Razik, A.K.A.: Vibration control of two degrees of freedom system using variable inertia vibration absorbers: modeling and simulation. J. Sound Vib. 329, 4841–4865 (2010)
6.
go back to reference Tursun, M., Eşkinat, E.: H2 optimization of damped-vibration absorbers for suppressing vibrations in beams with constrained minimization. J. Vib. Acoust. 136, 21012 (2014) Tursun, M., Eşkinat, E.: H2 optimization of damped-vibration absorbers for suppressing vibrations in beams with constrained minimization. J. Vib. Acoust. 136, 21012 (2014)
7.
go back to reference Frahm, H.: Device for damping vibrations of bodies. U.S. Patent No. 989,958. U.S. Patent and Trademark Office, Washington, DC (1911) Frahm, H.: Device for damping vibrations of bodies. U.S. Patent No. 989,958. U.S. Patent and Trademark Office, Washington, DC (1911)
8.
go back to reference Ormondroyd, J.: The theory of the dynamic vibration absorber. Trans. ASME Appl. Mech. 50, 9–22 (1928) Ormondroyd, J.: The theory of the dynamic vibration absorber. Trans. ASME Appl. Mech. 50, 9–22 (1928)
9.
go back to reference Hahnkamm, E.: The damping of the foundation vibrations at varying excitation frequency. Master Archit. 4, 192–201 (1932) Hahnkamm, E.: The damping of the foundation vibrations at varying excitation frequency. Master Archit. 4, 192–201 (1932)
10.
go back to reference Den Hartog, J.P.: Mechanical Vibrations. Courier Corporation, North Chelmsford (1985)MATH Den Hartog, J.P.: Mechanical Vibrations. Courier Corporation, North Chelmsford (1985)MATH
11.
go back to reference Vu, X.-T., Nguyen, D.-C., Khong, D.-D., Tong, V.-C.: Closed-form solutions to the optimization of dynamic vibration absorber attached to multi-degrees-of-freedom damped linear systems under torsional excitation using the fixed-point theory. Inst. Mech. Eng. Part K J. Multi-body Dyn. 232, 237–252 (2018) Vu, X.-T., Nguyen, D.-C., Khong, D.-D., Tong, V.-C.: Closed-form solutions to the optimization of dynamic vibration absorber attached to multi-degrees-of-freedom damped linear systems under torsional excitation using the fixed-point theory. Inst. Mech. Eng. Part K J. Multi-body Dyn. 232, 237–252 (2018)
12.
go back to reference Hua, Y., Wong, W., Cheng, L.: Optimal design of a beam-based dynamic vibration absorber using fixed-points theory. J. Sound Vib. 421, 111–131 (2018) Hua, Y., Wong, W., Cheng, L.: Optimal design of a beam-based dynamic vibration absorber using fixed-points theory. J. Sound Vib. 421, 111–131 (2018)
14.
go back to reference Kalehsar, H.E., Khodaie, N.: Optimization of response of a dynamic vibration absorber forming part of the main system by the fixed-point theory. KSCE J. Civ. Eng. 22, 2354–2361 (2018) Kalehsar, H.E., Khodaie, N.: Optimization of response of a dynamic vibration absorber forming part of the main system by the fixed-point theory. KSCE J. Civ. Eng. 22, 2354–2361 (2018)
15.
go back to reference Noori, B., Farshidianfar, A.: Optimum design of dynamic vibration absorbers for a beam, based on H\(\infty \) and H2 optimization. Arch. Appl. Mech. 83, 1773–1787 (2013)MATH Noori, B., Farshidianfar, A.: Optimum design of dynamic vibration absorbers for a beam, based on H\(\infty \) and H2 optimization. Arch. Appl. Mech. 83, 1773–1787 (2013)MATH
16.
go back to reference Nishihara, O.: Exact optimization of a three-element dynamic vibration absorber: minimization of the maximum amplitude magnification factor. J. Vib. Acoust. 141, 11001 (2019) Nishihara, O.: Exact optimization of a three-element dynamic vibration absorber: minimization of the maximum amplitude magnification factor. J. Vib. Acoust. 141, 11001 (2019)
17.
go back to reference Cheung, Y.L., Wong, W.O.: H\(\infty \) and H2 optimizations of a dynamic vibration absorber for suppressing vibrations in plates. J. Sound Vib. 320, 29–42 (2009) Cheung, Y.L., Wong, W.O.: H\(\infty \) and H2 optimizations of a dynamic vibration absorber for suppressing vibrations in plates. J. Sound Vib. 320, 29–42 (2009)
18.
go back to reference Moradi, H., Sadighi, M., Bakhtiari-Nejad, F.: Optimum design of a tuneable vibration absorber with variable position to suppress vibration of a cantilever plate. Int. J. Acoust. Vib. 16, 55 (2011) Moradi, H., Sadighi, M., Bakhtiari-Nejad, F.: Optimum design of a tuneable vibration absorber with variable position to suppress vibration of a cantilever plate. Int. J. Acoust. Vib. 16, 55 (2011)
19.
go back to reference Jacquot, R.G.: Suppression of random vibration in plates using vibration absorbers. J. Sound Vib. 248, 585–596 (2001) Jacquot, R.G.: Suppression of random vibration in plates using vibration absorbers. J. Sound Vib. 248, 585–596 (2001)
20.
go back to reference Faal, R.T., Amiri, M.B., Pirmohammadi, A.A., Milani, A.S.: Vibration analysis of undamped, suspended multi-beam absorber systems. Meccanica 47, 1059–1078 (2012)MathSciNetMATH Faal, R.T., Amiri, M.B., Pirmohammadi, A.A., Milani, A.S.: Vibration analysis of undamped, suspended multi-beam absorber systems. Meccanica 47, 1059–1078 (2012)MathSciNetMATH
21.
go back to reference Yamaguchi, H.: Damping of transient vibration by a dynamic absorber. Trans. Jpn. Soc. Mech. Eng. 54, 561 (1988) Yamaguchi, H.: Damping of transient vibration by a dynamic absorber. Trans. Jpn. Soc. Mech. Eng. 54, 561 (1988)
22.
go back to reference Nishihara, O., Matsuhisa, H.: Design of a dynamic vibration absorber for minimization of maximum amplitude magnification factor (derivation of algebraic exact solution). Trans. Jpn. Soc. Mech. Eng. Ser. C. 63, 3438–3445 (1997) Nishihara, O., Matsuhisa, H.: Design of a dynamic vibration absorber for minimization of maximum amplitude magnification factor (derivation of algebraic exact solution). Trans. Jpn. Soc. Mech. Eng. Ser. C. 63, 3438–3445 (1997)
23.
go back to reference Esmailzadeh, E., Jalili, N.: Optimum design of vibration absorbers for structurally damped Timoshenko beams. J. Vib. Acoust. 120, 833–841 (1998) Esmailzadeh, E., Jalili, N.: Optimum design of vibration absorbers for structurally damped Timoshenko beams. J. Vib. Acoust. 120, 833–841 (1998)
24.
go back to reference Brown, B., Singh, T.: Minimax design of vibration absorbers for linear damped systems. J. Sound Vib. 330, 2437–2448 (2011) Brown, B., Singh, T.: Minimax design of vibration absorbers for linear damped systems. J. Sound Vib. 330, 2437–2448 (2011)
25.
go back to reference Fang, J., Wang, S.-M., Wang, Q.: Optimal design of vibration absorber using minimax criterion with simplified constraints. Acta Mech. Sin. 28, 848–853 (2012)MathSciNet Fang, J., Wang, S.-M., Wang, Q.: Optimal design of vibration absorber using minimax criterion with simplified constraints. Acta Mech. Sin. 28, 848–853 (2012)MathSciNet
26.
go back to reference Fang, J., Wang, Q., Wang, S., Wang, Q.: Min-max criterion to the optimal design of vibration absorber in a system with Coulomb friction and viscous damping. Nonlinear Dyn. 70, 393–400 (2012)MathSciNet Fang, J., Wang, Q., Wang, S., Wang, Q.: Min-max criterion to the optimal design of vibration absorber in a system with Coulomb friction and viscous damping. Nonlinear Dyn. 70, 393–400 (2012)MathSciNet
27.
go back to reference Anh, N.D., Nguyen, N.X.: Design of non-traditional dynamic vibration absorber for damped linear structures. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 228, 45–55 (2014) Anh, N.D., Nguyen, N.X.: Design of non-traditional dynamic vibration absorber for damped linear structures. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 228, 45–55 (2014)
28.
go back to reference Zilletti, M., Elliott, S.J., Rustighi, E.: Optimisation of dynamic vibration absorbers to minimise kinetic energy and maximise internal power dissipation. J. Sound Vib. 331, 4093–4100 (2012) Zilletti, M., Elliott, S.J., Rustighi, E.: Optimisation of dynamic vibration absorbers to minimise kinetic energy and maximise internal power dissipation. J. Sound Vib. 331, 4093–4100 (2012)
29.
go back to reference Yang, C., Li, D., Cheng, L.: Dynamic vibration absorbers for vibration control within a frequency band. J. Sound Vib. 330, 1582–1598 (2011) Yang, C., Li, D., Cheng, L.: Dynamic vibration absorbers for vibration control within a frequency band. J. Sound Vib. 330, 1582–1598 (2011)
30.
go back to reference Wang, Y.Z., Wang, K.S.: The optimal design of a dynamic absorber for an arbitrary planar structure. Appl. Acoust. 23, 85–98 (1988) Wang, Y.Z., Wang, K.S.: The optimal design of a dynamic absorber for an arbitrary planar structure. Appl. Acoust. 23, 85–98 (1988)
31.
go back to reference Viana, F.A.C., Kotinda, G.I., Rade, D.A., Steffen Jr., V.: Tuning dynamic vibration absorbers by using ant colony optimization. Comput. Struct. 86, 1539–1549 (2008) Viana, F.A.C., Kotinda, G.I., Rade, D.A., Steffen Jr., V.: Tuning dynamic vibration absorbers by using ant colony optimization. Comput. Struct. 86, 1539–1549 (2008)
32.
go back to reference Wong, W.O., Tang, S.L., Cheung, Y.L., Cheng, L.: Design of a dynamic vibration absorber for vibration isolation of beams under point or distributed loading. J. Sound Vib. 301, 898–908 (2007) Wong, W.O., Tang, S.L., Cheung, Y.L., Cheng, L.: Design of a dynamic vibration absorber for vibration isolation of beams under point or distributed loading. J. Sound Vib. 301, 898–908 (2007)
33.
go back to reference Issa, J.S.: Vibration absorbers for simply supported beams subjected to constant moving loads. Proc. Inst. Mech. Eng. Part K J. Multi-body Dyn. 226, 398–404 (2012) Issa, J.S.: Vibration absorbers for simply supported beams subjected to constant moving loads. Proc. Inst. Mech. Eng. Part K J. Multi-body Dyn. 226, 398–404 (2012)
34.
go back to reference Febbo, M., Vera, S.A.: Optimization of a two degree of freedom system acting as a dynamic vibration absorber. J. Vib. Acoust. 130, 11013 (2008) Febbo, M., Vera, S.A.: Optimization of a two degree of freedom system acting as a dynamic vibration absorber. J. Vib. Acoust. 130, 11013 (2008)
35.
go back to reference Moghaddas, M., Esmailzadeh, E., Sedaghati, R., Khosravi, P.: Vibration control of Timoshenko beam traversed by moving vehicle using optimized tuned mass damper. J. Vib. Control 18, 757–773 (2012)MathSciNetMATH Moghaddas, M., Esmailzadeh, E., Sedaghati, R., Khosravi, P.: Vibration control of Timoshenko beam traversed by moving vehicle using optimized tuned mass damper. J. Vib. Control 18, 757–773 (2012)MathSciNetMATH
36.
go back to reference Kukla, S.: Frequency analysis of a rectangular plate with attached discrete systems. J. Sound Vib. 264, 225–234 (2003) Kukla, S.: Frequency analysis of a rectangular plate with attached discrete systems. J. Sound Vib. 264, 225–234 (2003)
37.
go back to reference Kukla, S., Szewczyk, M.: Frequency analysis of annular plates with elastic concentric supports by Green’s function method. J. Sound Vib. 300, 387–393 (2007) Kukla, S., Szewczyk, M.: Frequency analysis of annular plates with elastic concentric supports by Green’s function method. J. Sound Vib. 300, 387–393 (2007)
38.
go back to reference Zur, K.K.: Green’s function for frequency analysis of thin annular plates with nonlinear variable thickness. Appl. Math. Model. 40, 3601–3619 (2016)MathSciNetMATH Zur, K.K.: Green’s function for frequency analysis of thin annular plates with nonlinear variable thickness. Appl. Math. Model. 40, 3601–3619 (2016)MathSciNetMATH
39.
go back to reference Żur, K.K.: Quasi-Green’s function approach to free vibration analysis of elastically supported functionally graded circular plates. Compos. Struct. 183, 600–610 (2018) Żur, K.K.: Quasi-Green’s function approach to free vibration analysis of elastically supported functionally graded circular plates. Compos. Struct. 183, 600–610 (2018)
40.
go back to reference Żur, K.K.: Free vibration analysis of elastically supported functionally graded annular plates via quasi-Green’s function method. Compos. Part B Eng. 144, 37–55 (2018) Żur, K.K.: Free vibration analysis of elastically supported functionally graded annular plates via quasi-Green’s function method. Compos. Part B Eng. 144, 37–55 (2018)
41.
go back to reference Żur, K.K.: Quasi-Green’s function approach to fundamental frequency analysis of elastically supported thin circular and annular plates with elastic constraints. J. Theor. Appl. Mech. 55, 87–101 (2017) Żur, K.K.: Quasi-Green’s function approach to fundamental frequency analysis of elastically supported thin circular and annular plates with elastic constraints. J. Theor. Appl. Mech. 55, 87–101 (2017)
42.
go back to reference Hou, P.-F., Chen, J.-Y.: A refined analysis for the transversely isotropic plate under tangential loads by the 3D Green’s function. Eng. Anal. Bound. Elem. 93, 10–20 (2018)MathSciNetMATH Hou, P.-F., Chen, J.-Y.: A refined analysis for the transversely isotropic plate under tangential loads by the 3D Green’s function. Eng. Anal. Bound. Elem. 93, 10–20 (2018)MathSciNetMATH
43.
go back to reference Rao, S.S.: Vibration of Continuous Systems. Wiley, New York (2007) Rao, S.S.: Vibration of Continuous Systems. Wiley, New York (2007)
44.
go back to reference Baferani, A.H., Saidi, A.R., Jomehzadeh, E.: An exact solution for free vibration of thin functionally graded rectangular plates. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 225, 526–536 (2011)MATH Baferani, A.H., Saidi, A.R., Jomehzadeh, E.: An exact solution for free vibration of thin functionally graded rectangular plates. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 225, 526–536 (2011)MATH
Metadata
Title
Passive vibration suppression of plate using multiple optimal dynamic vibration absorbers
Authors
M. Ari
R. T. Faal
Publication date
12-10-2019
Publisher
Springer Berlin Heidelberg
Published in
Archive of Applied Mechanics / Issue 2/2020
Print ISSN: 0939-1533
Electronic ISSN: 1432-0681
DOI
https://doi.org/10.1007/s00419-019-01607-z

Other articles of this Issue 2/2020

Archive of Applied Mechanics 2/2020 Go to the issue

Premium Partners