Skip to main content
Top
Published in: Wireless Personal Communications 2/2021

26-04-2021

Performance Analysis of an Extended Sierpinski Gasket Fractal Antenna for Millimeter-wave Femtocells Applications

Authors: V. Harini, M. V. S Sairam, R. Madhu

Published in: Wireless Personal Communications | Issue 2/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A performance study on the design and analysis of an extended Sierpinski gasket fractal antenna for mm-wave femtocell applications were implemented. The initial analysis includes the design of different stages of basic Sierpinski gasket fractal antenna and its performance characteristics like reflection coefficient, gain, and efficiency. The size of the basic equilateral triangle patch is around 5.193 mm. The antenna is designed on Arlon Di-clad 880 mm substrate materials with a thickness of 0.508 mm and a dielectric constant of 2.2. The proposed antenna efficiently operates at frequencies from 24 to 61 GHz with reflection coefficient values \(-10\) to \(-32\) dB. The simulated gains in dB values at resonant frequencies are from 02 to 16 dB with almost 100% radiation efficiency. Later on, this design was extended, simulated, fabricated, and results like reflection coefficient, VSWR, and radiation are measured in an Anechoic chamber. The designed extended Sierpinski fractal antenna was radiated with the maximum electric field in all directions indicating an omnidirectional antenna at the desired feed position. The proposed antenna can work with 5G femtocell applications where Femto base stations require miniaturized antennas for indoor communications.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Chandrasekhar, V., Andrews, J., & Gatherer, A. (2008). Femtocell networks: a survey. arXiv:0803.0952. Chandrasekhar, V., Andrews, J., & Gatherer, A. (2008). Femtocell networks: a survey. arXiv:0803.0952.
2.
go back to reference Rappaport, T. S., Sun, S., Mayzus, R., Zhao, H., Azar, Y., Wang, K., & Gutierrez, E. (2013). Millimeter wave mobile communications for 5G cellular: It will work! IEEE Access, 1, 335–349.CrossRef Rappaport, T. S., Sun, S., Mayzus, R., Zhao, H., Azar, Y., Wang, K., & Gutierrez, E. (2013). Millimeter wave mobile communications for 5G cellular: It will work! IEEE Access, 1, 335–349.CrossRef
3.
4.
go back to reference Telecom Regulatory Authority of India (TRAI). (2019). Enabling 5G in India, a White Paper. Telecom Regulatory Authority of India (TRAI). (2019). Enabling 5G in India, a White Paper.
5.
go back to reference Harini, V., Sairam, M. V. S., Madhu, R., Naresh Kumar, M. (2019). Crescent shaped slot mmwave array antenna for future 5G femtocells applications. International Journal of Engineering and Advanced Technology (IJEAT), 8(5). Harini, V., Sairam, M. V. S., Madhu, R., Naresh Kumar, M. (2019). Crescent shaped slot mmwave array antenna for future 5G femtocells applications. International Journal of Engineering and Advanced Technology (IJEAT), 8(5).
6.
go back to reference Şeker, C., Ozturk, T., & Güneşer, M. T. (2018). A single band antenna design for future millimeter wave wireless communication at 38 GHz. European Journal of Engineering and Formal Sciences, 2(2), 35–39.CrossRef Şeker, C., Ozturk, T., & Güneşer, M. T. (2018). A single band antenna design for future millimeter wave wireless communication at 38 GHz. European Journal of Engineering and Formal Sciences, 2(2), 35–39.CrossRef
7.
go back to reference Imran, D., Farooqi, M. M., Khattak, M. I., Ullah, Z., Khan, M. I., Khattak, M. A., & Dar, H. (2018). Millimeter wave microstrip patch antenna for 5G mobile communication. In 2018 International Conference on Engineering and Emerging Technologies (ICEET) (pp. 1–6). IEEE. Imran, D., Farooqi, M. M., Khattak, M. I., Ullah, Z., Khan, M. I., Khattak, M. A., & Dar, H. (2018). Millimeter wave microstrip patch antenna for 5G mobile communication. In 2018 International Conference on Engineering and Emerging Technologies (ICEET) (pp. 1–6). IEEE.
8.
go back to reference El Mashade, M. B., & Hegazy, E. A. (2018). Design and analysis of 28 GHz rectangular microstrip patch array antenna. WSEAS Transactions on Communications, 17, 1–9. El Mashade, M. B., & Hegazy, E. A. (2018). Design and analysis of 28 GHz rectangular microstrip patch array antenna. WSEAS Transactions on Communications, 17, 1–9.
9.
go back to reference Muhammad, S., Yaro, A. S., Ya’u, I., & Abubakar, A. S. (2019). Design of single feed dual-band millimeter wave antenna for future 5G wireless applications. Science World Journal, 14(1), 84–87. Muhammad, S., Yaro, A. S., Ya’u, I., & Abubakar, A. S. (2019). Design of single feed dual-band millimeter wave antenna for future 5G wireless applications. Science World Journal, 14(1), 84–87.
10.
go back to reference Mishra, G. P., Maharana, M. S. , Modak, S., & Mangaraj, B. B. (2017). Study of Sierpinski fractal antenna and its array with different patch geometries for short wave ka band wireless applications. In 7th International Conference on Advances in Computing & Communications, ICACC-2017, 22–24 August 2017, Cochin, India. Mishra, G. P., Maharana, M. S. , Modak, S., & Mangaraj, B. B. (2017). Study of Sierpinski fractal antenna and its array with different patch geometries for short wave ka band wireless applications. In 7th International Conference on Advances in Computing & Communications, ICACC-2017, 22–24 August 2017, Cochin, India.
11.
go back to reference Kang, S., & Jung, C. W. (2015). Dual band and beam-steering antennas using reconfigurable feed on Sierpinski structure. International Journal of Antennas and Propagation, 2015, 492710. Kang, S., & Jung, C. W. (2015). Dual band and beam-steering antennas using reconfigurable feed on Sierpinski structure. International Journal of Antennas and Propagation, 2015, 492710.
12.
go back to reference Gupta, M., & Mathur, V. (2017). Sierpinski fractal antenna for internet of things applications. Materials Today: Proceedings, 4(9), 10298–10303. Gupta, M., & Mathur, V. (2017). Sierpinski fractal antenna for internet of things applications. Materials Today: Proceedings, 4(9), 10298–10303.
13.
go back to reference Werner, D. H., & Ganguly, S. (2003). An overview of fractal antenna engineering research. IEEE Antennas and propagation Magazine, 45(1), 38–57.CrossRef Werner, D. H., & Ganguly, S. (2003). An overview of fractal antenna engineering research. IEEE Antennas and propagation Magazine, 45(1), 38–57.CrossRef
14.
go back to reference Vinoy, K. J. (2002). Fractal shaped antenna elements for wide-and multi-band wireless applications. Ph.D. Thesis. The Pennsylvania State University. The Graduate School. College of Engineering. Vinoy, K. J. (2002). Fractal shaped antenna elements for wide-and multi-band wireless applications. Ph.D. Thesis. The Pennsylvania State University. The Graduate School. College of Engineering.
15.
go back to reference Rogers Corporation. (1998).PTFE/Woven Fiberglass Laminates, Diclad series datasheet, Printed in U.S.A Arlon Materials for Electronics, 1200-R4 . Rogers Corporation. (1998).PTFE/Woven Fiberglass Laminates, Diclad series datasheet, Printed in U.S.A Arlon Materials for Electronics, 1200-R4 .
16.
go back to reference Pasternack Enterprises. (2016).1.85mm female field replaceable connector 2 Hole Flange Mount 0.009 inch Pin,0.481 inch Hole spacing , Data sheet PE44337. Pasternack Enterprises. (2016).1.85mm female field replaceable connector 2 Hole Flange Mount 0.009 inch Pin,0.481 inch Hole spacing , Data sheet PE44337.
17.
go back to reference Darimireddy, N. K., Reddy, R. R., & Prasad, A. M. (2018). A miniaturized hexagonal-triangular fractal antenna for wide-band applications [Antenna Applications Corner]. IEEE Antennas and Propagation Magazine, 60(2), 104–110.CrossRef Darimireddy, N. K., Reddy, R. R., & Prasad, A. M. (2018). A miniaturized hexagonal-triangular fractal antenna for wide-band applications [Antenna Applications Corner]. IEEE Antennas and Propagation Magazine, 60(2), 104–110.CrossRef
18.
go back to reference Azari, A. (2011). A new super wideband fractal microstrip antenna. IEEE Transactions on Antennas and Propagation, 59(5), 1724–1727.CrossRef Azari, A. (2011). A new super wideband fractal microstrip antenna. IEEE Transactions on Antennas and Propagation, 59(5), 1724–1727.CrossRef
19.
go back to reference Ali Dorostkar, M., Islam, M. T., & Azim, R. (2013). Design of a novel super wideband circular-hexagonal fractal antenna. Progress in Electromagnetics Research, 139, 229–245.CrossRef Ali Dorostkar, M., Islam, M. T., & Azim, R. (2013). Design of a novel super wideband circular-hexagonal fractal antenna. Progress in Electromagnetics Research, 139, 229–245.CrossRef
20.
go back to reference Mukti, P. H., Wibowo, S. H., & Setijadi, E. (2016). A compact wideband fractal-based planar antenna with meandered transmission line for L-band applications. Progress In Electromagnetics Research, 61, 139–147.CrossRef Mukti, P. H., Wibowo, S. H., & Setijadi, E. (2016). A compact wideband fractal-based planar antenna with meandered transmission line for L-band applications. Progress In Electromagnetics Research, 61, 139–147.CrossRef
21.
go back to reference Harini, V., Sairam, M. V. S., & Madhu, R. (2020). Design of 31.2/40.1667 GHz dual band antenna for future mmwave 5G femtocell access point applications. In Advances in Decision Sciences, Image Processing, Security and Computer Vision (pp. 104–111). Springer, Cham. Harini, V., Sairam, M. V. S., & Madhu, R. (2020). Design of 31.2/40.1667 GHz dual band antenna for future mmwave 5G femtocell access point applications. In Advances in Decision Sciences, Image Processing, Security and Computer Vision (pp. 104–111). Springer, Cham.
22.
go back to reference Rahayu, Y., & Hidayat, M. I. (2018). Design of 28/38 GHz dual-band triangular-shaped slot microstrip antenna array for 5G applications. In 2018 2nd International Conference on Telematics and Future Generation Networks (TAFGEN) (pp. 93–97). IEEE. Rahayu, Y., & Hidayat, M. I. (2018). Design of 28/38 GHz dual-band triangular-shaped slot microstrip antenna array for 5G applications. In 2018 2nd International Conference on Telematics and Future Generation Networks (TAFGEN) (pp. 93–97). IEEE.
23.
go back to reference Puente, C., Romeu, J., Pous, R., Garcia, X., & Benitez, F. (1996). Fractal multiband antenna based on the Sierpinski gasket. Electronics Letters, 32(1), 1–2.CrossRef Puente, C., Romeu, J., Pous, R., Garcia, X., & Benitez, F. (1996). Fractal multiband antenna based on the Sierpinski gasket. Electronics Letters, 32(1), 1–2.CrossRef
24.
go back to reference Service Guide E8362C, E8363C, E8364C Agilent Technologies PNA Series Microwave Network Analyzers. Service Guide E8362C, E8363C, E8364C Agilent Technologies PNA Series Microwave Network Analyzers.
Metadata
Title
Performance Analysis of an Extended Sierpinski Gasket Fractal Antenna for Millimeter-wave Femtocells Applications
Authors
V. Harini
M. V. S Sairam
R. Madhu
Publication date
26-04-2021
Publisher
Springer US
Published in
Wireless Personal Communications / Issue 2/2021
Print ISSN: 0929-6212
Electronic ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-021-08289-3

Other articles of this Issue 2/2021

Wireless Personal Communications 2/2021 Go to the issue