Skip to main content
Erschienen in: Wireless Personal Communications 2/2021

26.04.2021

Performance Analysis of an Extended Sierpinski Gasket Fractal Antenna for Millimeter-wave Femtocells Applications

verfasst von: V. Harini, M. V. S Sairam, R. Madhu

Erschienen in: Wireless Personal Communications | Ausgabe 2/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A performance study on the design and analysis of an extended Sierpinski gasket fractal antenna for mm-wave femtocell applications were implemented. The initial analysis includes the design of different stages of basic Sierpinski gasket fractal antenna and its performance characteristics like reflection coefficient, gain, and efficiency. The size of the basic equilateral triangle patch is around 5.193 mm. The antenna is designed on Arlon Di-clad 880 mm substrate materials with a thickness of 0.508 mm and a dielectric constant of 2.2. The proposed antenna efficiently operates at frequencies from 24 to 61 GHz with reflection coefficient values \(-10\) to \(-32\) dB. The simulated gains in dB values at resonant frequencies are from 02 to 16 dB with almost 100% radiation efficiency. Later on, this design was extended, simulated, fabricated, and results like reflection coefficient, VSWR, and radiation are measured in an Anechoic chamber. The designed extended Sierpinski fractal antenna was radiated with the maximum electric field in all directions indicating an omnidirectional antenna at the desired feed position. The proposed antenna can work with 5G femtocell applications where Femto base stations require miniaturized antennas for indoor communications.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Chandrasekhar, V., Andrews, J., & Gatherer, A. (2008). Femtocell networks: a survey. arXiv:0803.0952. Chandrasekhar, V., Andrews, J., & Gatherer, A. (2008). Femtocell networks: a survey. arXiv:0803.0952.
2.
Zurück zum Zitat Rappaport, T. S., Sun, S., Mayzus, R., Zhao, H., Azar, Y., Wang, K., & Gutierrez, E. (2013). Millimeter wave mobile communications for 5G cellular: It will work! IEEE Access, 1, 335–349.CrossRef Rappaport, T. S., Sun, S., Mayzus, R., Zhao, H., Azar, Y., Wang, K., & Gutierrez, E. (2013). Millimeter wave mobile communications for 5G cellular: It will work! IEEE Access, 1, 335–349.CrossRef
3.
Zurück zum Zitat Abu-Rgheff, M. A. (2019). 5G physical layer technologies. Hoboken: Wiley.CrossRef Abu-Rgheff, M. A. (2019). 5G physical layer technologies. Hoboken: Wiley.CrossRef
4.
Zurück zum Zitat Telecom Regulatory Authority of India (TRAI). (2019). Enabling 5G in India, a White Paper. Telecom Regulatory Authority of India (TRAI). (2019). Enabling 5G in India, a White Paper.
5.
Zurück zum Zitat Harini, V., Sairam, M. V. S., Madhu, R., Naresh Kumar, M. (2019). Crescent shaped slot mmwave array antenna for future 5G femtocells applications. International Journal of Engineering and Advanced Technology (IJEAT), 8(5). Harini, V., Sairam, M. V. S., Madhu, R., Naresh Kumar, M. (2019). Crescent shaped slot mmwave array antenna for future 5G femtocells applications. International Journal of Engineering and Advanced Technology (IJEAT), 8(5).
6.
Zurück zum Zitat Şeker, C., Ozturk, T., & Güneşer, M. T. (2018). A single band antenna design for future millimeter wave wireless communication at 38 GHz. European Journal of Engineering and Formal Sciences, 2(2), 35–39.CrossRef Şeker, C., Ozturk, T., & Güneşer, M. T. (2018). A single band antenna design for future millimeter wave wireless communication at 38 GHz. European Journal of Engineering and Formal Sciences, 2(2), 35–39.CrossRef
7.
Zurück zum Zitat Imran, D., Farooqi, M. M., Khattak, M. I., Ullah, Z., Khan, M. I., Khattak, M. A., & Dar, H. (2018). Millimeter wave microstrip patch antenna for 5G mobile communication. In 2018 International Conference on Engineering and Emerging Technologies (ICEET) (pp. 1–6). IEEE. Imran, D., Farooqi, M. M., Khattak, M. I., Ullah, Z., Khan, M. I., Khattak, M. A., & Dar, H. (2018). Millimeter wave microstrip patch antenna for 5G mobile communication. In 2018 International Conference on Engineering and Emerging Technologies (ICEET) (pp. 1–6). IEEE.
8.
Zurück zum Zitat El Mashade, M. B., & Hegazy, E. A. (2018). Design and analysis of 28 GHz rectangular microstrip patch array antenna. WSEAS Transactions on Communications, 17, 1–9. El Mashade, M. B., & Hegazy, E. A. (2018). Design and analysis of 28 GHz rectangular microstrip patch array antenna. WSEAS Transactions on Communications, 17, 1–9.
9.
Zurück zum Zitat Muhammad, S., Yaro, A. S., Ya’u, I., & Abubakar, A. S. (2019). Design of single feed dual-band millimeter wave antenna for future 5G wireless applications. Science World Journal, 14(1), 84–87. Muhammad, S., Yaro, A. S., Ya’u, I., & Abubakar, A. S. (2019). Design of single feed dual-band millimeter wave antenna for future 5G wireless applications. Science World Journal, 14(1), 84–87.
10.
Zurück zum Zitat Mishra, G. P., Maharana, M. S. , Modak, S., & Mangaraj, B. B. (2017). Study of Sierpinski fractal antenna and its array with different patch geometries for short wave ka band wireless applications. In 7th International Conference on Advances in Computing & Communications, ICACC-2017, 22–24 August 2017, Cochin, India. Mishra, G. P., Maharana, M. S. , Modak, S., & Mangaraj, B. B. (2017). Study of Sierpinski fractal antenna and its array with different patch geometries for short wave ka band wireless applications. In 7th International Conference on Advances in Computing & Communications, ICACC-2017, 22–24 August 2017, Cochin, India.
11.
Zurück zum Zitat Kang, S., & Jung, C. W. (2015). Dual band and beam-steering antennas using reconfigurable feed on Sierpinski structure. International Journal of Antennas and Propagation, 2015, 492710. Kang, S., & Jung, C. W. (2015). Dual band and beam-steering antennas using reconfigurable feed on Sierpinski structure. International Journal of Antennas and Propagation, 2015, 492710.
12.
Zurück zum Zitat Gupta, M., & Mathur, V. (2017). Sierpinski fractal antenna for internet of things applications. Materials Today: Proceedings, 4(9), 10298–10303. Gupta, M., & Mathur, V. (2017). Sierpinski fractal antenna for internet of things applications. Materials Today: Proceedings, 4(9), 10298–10303.
13.
Zurück zum Zitat Werner, D. H., & Ganguly, S. (2003). An overview of fractal antenna engineering research. IEEE Antennas and propagation Magazine, 45(1), 38–57.CrossRef Werner, D. H., & Ganguly, S. (2003). An overview of fractal antenna engineering research. IEEE Antennas and propagation Magazine, 45(1), 38–57.CrossRef
14.
Zurück zum Zitat Vinoy, K. J. (2002). Fractal shaped antenna elements for wide-and multi-band wireless applications. Ph.D. Thesis. The Pennsylvania State University. The Graduate School. College of Engineering. Vinoy, K. J. (2002). Fractal shaped antenna elements for wide-and multi-band wireless applications. Ph.D. Thesis. The Pennsylvania State University. The Graduate School. College of Engineering.
15.
Zurück zum Zitat Rogers Corporation. (1998).PTFE/Woven Fiberglass Laminates, Diclad series datasheet, Printed in U.S.A Arlon Materials for Electronics, 1200-R4 . Rogers Corporation. (1998).PTFE/Woven Fiberglass Laminates, Diclad series datasheet, Printed in U.S.A Arlon Materials for Electronics, 1200-R4 .
16.
Zurück zum Zitat Pasternack Enterprises. (2016).1.85mm female field replaceable connector 2 Hole Flange Mount 0.009 inch Pin,0.481 inch Hole spacing , Data sheet PE44337. Pasternack Enterprises. (2016).1.85mm female field replaceable connector 2 Hole Flange Mount 0.009 inch Pin,0.481 inch Hole spacing , Data sheet PE44337.
17.
Zurück zum Zitat Darimireddy, N. K., Reddy, R. R., & Prasad, A. M. (2018). A miniaturized hexagonal-triangular fractal antenna for wide-band applications [Antenna Applications Corner]. IEEE Antennas and Propagation Magazine, 60(2), 104–110.CrossRef Darimireddy, N. K., Reddy, R. R., & Prasad, A. M. (2018). A miniaturized hexagonal-triangular fractal antenna for wide-band applications [Antenna Applications Corner]. IEEE Antennas and Propagation Magazine, 60(2), 104–110.CrossRef
18.
Zurück zum Zitat Azari, A. (2011). A new super wideband fractal microstrip antenna. IEEE Transactions on Antennas and Propagation, 59(5), 1724–1727.CrossRef Azari, A. (2011). A new super wideband fractal microstrip antenna. IEEE Transactions on Antennas and Propagation, 59(5), 1724–1727.CrossRef
19.
Zurück zum Zitat Ali Dorostkar, M., Islam, M. T., & Azim, R. (2013). Design of a novel super wideband circular-hexagonal fractal antenna. Progress in Electromagnetics Research, 139, 229–245.CrossRef Ali Dorostkar, M., Islam, M. T., & Azim, R. (2013). Design of a novel super wideband circular-hexagonal fractal antenna. Progress in Electromagnetics Research, 139, 229–245.CrossRef
20.
Zurück zum Zitat Mukti, P. H., Wibowo, S. H., & Setijadi, E. (2016). A compact wideband fractal-based planar antenna with meandered transmission line for L-band applications. Progress In Electromagnetics Research, 61, 139–147.CrossRef Mukti, P. H., Wibowo, S. H., & Setijadi, E. (2016). A compact wideband fractal-based planar antenna with meandered transmission line for L-band applications. Progress In Electromagnetics Research, 61, 139–147.CrossRef
21.
Zurück zum Zitat Harini, V., Sairam, M. V. S., & Madhu, R. (2020). Design of 31.2/40.1667 GHz dual band antenna for future mmwave 5G femtocell access point applications. In Advances in Decision Sciences, Image Processing, Security and Computer Vision (pp. 104–111). Springer, Cham. Harini, V., Sairam, M. V. S., & Madhu, R. (2020). Design of 31.2/40.1667 GHz dual band antenna for future mmwave 5G femtocell access point applications. In Advances in Decision Sciences, Image Processing, Security and Computer Vision (pp. 104–111). Springer, Cham.
22.
Zurück zum Zitat Rahayu, Y., & Hidayat, M. I. (2018). Design of 28/38 GHz dual-band triangular-shaped slot microstrip antenna array for 5G applications. In 2018 2nd International Conference on Telematics and Future Generation Networks (TAFGEN) (pp. 93–97). IEEE. Rahayu, Y., & Hidayat, M. I. (2018). Design of 28/38 GHz dual-band triangular-shaped slot microstrip antenna array for 5G applications. In 2018 2nd International Conference on Telematics and Future Generation Networks (TAFGEN) (pp. 93–97). IEEE.
23.
Zurück zum Zitat Puente, C., Romeu, J., Pous, R., Garcia, X., & Benitez, F. (1996). Fractal multiband antenna based on the Sierpinski gasket. Electronics Letters, 32(1), 1–2.CrossRef Puente, C., Romeu, J., Pous, R., Garcia, X., & Benitez, F. (1996). Fractal multiband antenna based on the Sierpinski gasket. Electronics Letters, 32(1), 1–2.CrossRef
24.
Zurück zum Zitat Service Guide E8362C, E8363C, E8364C Agilent Technologies PNA Series Microwave Network Analyzers. Service Guide E8362C, E8363C, E8364C Agilent Technologies PNA Series Microwave Network Analyzers.
Metadaten
Titel
Performance Analysis of an Extended Sierpinski Gasket Fractal Antenna for Millimeter-wave Femtocells Applications
verfasst von
V. Harini
M. V. S Sairam
R. Madhu
Publikationsdatum
26.04.2021
Verlag
Springer US
Erschienen in
Wireless Personal Communications / Ausgabe 2/2021
Print ISSN: 0929-6212
Elektronische ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-021-08289-3

Weitere Artikel der Ausgabe 2/2021

Wireless Personal Communications 2/2021 Zur Ausgabe

Neuer Inhalt