Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

01-02-2014 | Methodologies and Application | Issue 2/2014

Soft Computing 2/2014

Performance enhancement of extreme learning machine for power system disturbances classification

Journal:
Soft Computing > Issue 2/2014
Authors:
R. Ahila, V. Sadasivam
Important notes
Communicated by G. Acampora.

Abstract

This paper proposes an optimal feature and parameter selection approach for extreme learning machine (ELM) for classifying power system disturbances. The relevant features of non-stationary time series data from power disturbances are extracted using a multiresolution S-transform which can be treated either as a phase corrected wavelet transform or a variable window short-time Fourier transform. After extracting the relevant features from the time series data, an integrated PSO and ELM architectures are used for pattern recognition of disturbance waveform data. The particle swarm optimization is a powerful meta-heuristic technique in artificial intelligence field; therefore, this study proposes a PSO-based approach, to specify the beneficial features and the optimal parameter to enhance the performance of ELM. One of the advantages of ELM over other methods is that the parameter that the user must properly adjust is the number of hidden nodes only. In this paper, a hybrid optimization mechanism is proposed which combines the discrete-valued PSO with the continuous-valued PSO to optimize the input feature subset selection and the number of hidden nodes to enhance the performance of ELM. The experimental results showed the proposed algorithm is faster and more accurate in discriminating power system disturbances.

Please log in to get access to this content

To get access to this content you need the following product:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Literature
About this article

Other articles of this Issue 2/2014

Soft Computing 2/2014 Go to the issue

Premium Partner

    Image Credits