Skip to main content
Top
Published in: Computational Mechanics 3/2019

06-02-2019 | Original Paper

Performance of preconditioned iterative linear solvers for cardiovascular simulations in rigid and deformable vessels

Authors: Jongmin Seo, Daniele E. Schiavazzi, Alison L. Marsden

Published in: Computational Mechanics | Issue 3/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Computing the solution of linear systems of equations is invariably the most time consuming task in the numerical solutions of PDEs in many fields of computational science. In this study, we focus on the numerical simulation of cardiovascular hemodynamics with rigid and deformable walls, discretized in space and time through the variational multiscale finite element method. We focus on three approaches: the problem agnostic generalized minimum residual and stabilized bi-conjugate gradient (BICGS) methods, and a recently proposed, problem specific, bi-partitioned (BIPN) method. We also perform a comparative analysis of several preconditioners, including diagonal, block-diagonal, incomplete factorization, multigrid, and resistance based methods. Solver performance and matrix characteristics (diagonal dominance, symmetry, sparsity, bandwidth and spectral properties) are first examined for an idealized cylindrical geometry with physiologic boundary conditions and then successively tested on several patient-specific anatomies representative of realistic cardiovascular simulation problems. Incomplete factorization preconditioners provide the best performance and results in terms of both strong and weak scalability. The BIPN method was found to outperform other methods in patient-specific models with rigid walls. In models with deformable walls, BIPN was outperformed by BICG with diagonal and incomplete LU preconditioners.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference High performance computer applications 6th international conference, vol. 595, Germany, 1 2016 High performance computer applications 6th international conference, vol. 595, Germany, 1 2016
2.
go back to reference Bazilevs Y, Calo VM, Hughes TJR, Zhang Y (2008) Isogeometric fluid-structure interaction: theory, algorithms and computations. Comput Mech 43:3–37MathSciNetCrossRefMATH Bazilevs Y, Calo VM, Hughes TJR, Zhang Y (2008) Isogeometric fluid-structure interaction: theory, algorithms and computations. Comput Mech 43:3–37MathSciNetCrossRefMATH
3.
go back to reference Bazilevs Y, Hsu MC, Benson DJ, Sankaran S, Marsden AL (2009) Computational fluid-structure interaction: methods and application to a total cavopulmonary connection. Comput Mech 45(1):77–89MathSciNetCrossRefMATH Bazilevs Y, Hsu MC, Benson DJ, Sankaran S, Marsden AL (2009) Computational fluid-structure interaction: methods and application to a total cavopulmonary connection. Comput Mech 45(1):77–89MathSciNetCrossRefMATH
5.
go back to reference Benzi M, Szyld DB, van Duin A (1999) Orderings for incomplete factorization preconditioning of nonsymmetric problems. SIAM J Sci Comput 20(5):1652–1670MathSciNetCrossRefMATH Benzi M, Szyld DB, van Duin A (1999) Orderings for incomplete factorization preconditioning of nonsymmetric problems. SIAM J Sci Comput 20(5):1652–1670MathSciNetCrossRefMATH
6.
go back to reference Chen W, Poirier B (2006) Parallel implementation of efficient preconditioned linear solver for grid-based applications in chemical physics. I: block jacobi diagonalization. J Comput Phys 219(1):185–197MathSciNetCrossRefMATH Chen W, Poirier B (2006) Parallel implementation of efficient preconditioned linear solver for grid-based applications in chemical physics. I: block jacobi diagonalization. J Comput Phys 219(1):185–197MathSciNetCrossRefMATH
7.
go back to reference Corsini C, Cosentino D, Pennati G, Dubini G, Hsia T-Y, Migliavacca F (2011) Multiscale models of the hybrid palliation for hypoplastic left heart syndrome. J Biomech 44:767–770CrossRef Corsini C, Cosentino D, Pennati G, Dubini G, Hsia T-Y, Migliavacca F (2011) Multiscale models of the hybrid palliation for hypoplastic left heart syndrome. J Biomech 44:767–770CrossRef
8.
go back to reference Deparis S, Forti D, Grandperrin G, Quarteroni A (2016) Facsi: a block parallel preconditioner for fluid-structure interaction in hemodynamics. J Comput Phys 327:700–718MathSciNetCrossRefMATH Deparis S, Forti D, Grandperrin G, Quarteroni A (2016) Facsi: a block parallel preconditioner for fluid-structure interaction in hemodynamics. J Comput Phys 327:700–718MathSciNetCrossRefMATH
9.
go back to reference dos Santos RW, Plank G, Bauer S, Vigmond EJ (2004) Parallel multigrid preconditioner for the cardiac bidomain model. IEEE Trans Biomed Eng 51(11):1960–1967CrossRef dos Santos RW, Plank G, Bauer S, Vigmond EJ (2004) Parallel multigrid preconditioner for the cardiac bidomain model. IEEE Trans Biomed Eng 51(11):1960–1967CrossRef
10.
go back to reference Esmaily-Moghadam M, Bazilevs Y, Marsden AL (2013) A new preconditioning technique for implicitly coupled multidomain simulations with applications to hemodynamics. Comput Mech 52(5):1141–1152MathSciNetCrossRefMATH Esmaily-Moghadam M, Bazilevs Y, Marsden AL (2013) A new preconditioning technique for implicitly coupled multidomain simulations with applications to hemodynamics. Comput Mech 52(5):1141–1152MathSciNetCrossRefMATH
11.
go back to reference Esmaily-Moghadam M, Bazilevs Y, Marsden AL (2015) A bi-partitioned iterative algorithm for solving linear systems arising from incompressible flow problems. Comput Methods Appl Mech Eng 286:40–62MathSciNetCrossRefMATH Esmaily-Moghadam M, Bazilevs Y, Marsden AL (2015) A bi-partitioned iterative algorithm for solving linear systems arising from incompressible flow problems. Comput Methods Appl Mech Eng 286:40–62MathSciNetCrossRefMATH
12.
go back to reference Esmaily-Moghadam M, Bazilevs Y, Marsden AL (2015) Impact of data distribution on the parallel performance of iterative linear solvers with emphasis on cfd of incompressible flows. Comput Mech 55:93–103MathSciNetCrossRefMATH Esmaily-Moghadam M, Bazilevs Y, Marsden AL (2015) Impact of data distribution on the parallel performance of iterative linear solvers with emphasis on cfd of incompressible flows. Comput Mech 55:93–103MathSciNetCrossRefMATH
13.
go back to reference Figueroa CA, Vignon-Clementel IE, Jansen KE, Hughes TJ, Taylor CA (2006) A coupled momentum method for modeling blood flow in three-dimensional deformable arteries. Comput Methods Appl Mech Eng 195(41–43):5685–5706MathSciNetCrossRefMATH Figueroa CA, Vignon-Clementel IE, Jansen KE, Hughes TJ, Taylor CA (2006) A coupled momentum method for modeling blood flow in three-dimensional deformable arteries. Comput Methods Appl Mech Eng 195(41–43):5685–5706MathSciNetCrossRefMATH
14.
go back to reference Heroux MA, Bartlett RA, Howle VE, Hoekstra RJ, Hu JJ, Kolda TG, Lehoucq RB, Long KR, Pawlowski RP, Phipps ET, Salinger AG, Thornquist HK, Tuminaro RS, Willenbring JM, Williams A, Stanley KS (2005) An overview of the trilinos project. ACM Trans Math Softw 31(3):397–423MathSciNetCrossRefMATH Heroux MA, Bartlett RA, Howle VE, Hoekstra RJ, Hu JJ, Kolda TG, Lehoucq RB, Long KR, Pawlowski RP, Phipps ET, Salinger AG, Thornquist HK, Tuminaro RS, Willenbring JM, Williams A, Stanley KS (2005) An overview of the trilinos project. ACM Trans Math Softw 31(3):397–423MathSciNetCrossRefMATH
15.
go back to reference Hughes TJ, Liu WK, Zimmermann TK (1981) Lagrangian-eulerian finite element formulation for incompress- ible viscous flows. Comput Methods Appl Mech Eng 29(3):329–349CrossRefMATH Hughes TJ, Liu WK, Zimmermann TK (1981) Lagrangian-eulerian finite element formulation for incompress- ible viscous flows. Comput Methods Appl Mech Eng 29(3):329–349CrossRefMATH
16.
go back to reference Jansen KE, Whiting CH, Hulbert GM (2000) A generalized-\(\alpha \) method for integrating the filtered Navier–Stokes equations with a stabilized finite element method. Comput Methods Appl Mech Eng 190(3–4):305–319MathSciNetCrossRefMATH Jansen KE, Whiting CH, Hulbert GM (2000) A generalized-\(\alpha \) method for integrating the filtered Navier–Stokes equations with a stabilized finite element method. Comput Methods Appl Mech Eng 190(3–4):305–319MathSciNetCrossRefMATH
17.
go back to reference Kim HJ, Vignon-Clementel IE, Figueroa CA, LaDisa JF, Jansen KE, Feinstein JA, Taylor CA (2009) On coupling a lumped parameter heart model and a three-dimensional finite element aorta model. Annu Biomed Eng 37(11):2153–2169CrossRef Kim HJ, Vignon-Clementel IE, Figueroa CA, LaDisa JF, Jansen KE, Feinstein JA, Taylor CA (2009) On coupling a lumped parameter heart model and a three-dimensional finite element aorta model. Annu Biomed Eng 37(11):2153–2169CrossRef
18.
go back to reference Lagana K, Dubini G, Migliavacca F, Pietrabissa R, Pennati G, Veneziani A, Quarteroni A (2002) Multiscale modelling as a tool to prescribe realistic boundary conditions for the study of surgical procedures. Biorheology 39:359–364 Lagana K, Dubini G, Migliavacca F, Pietrabissa R, Pennati G, Veneziani A, Quarteroni A (2002) Multiscale modelling as a tool to prescribe realistic boundary conditions for the study of surgical procedures. Biorheology 39:359–364
19.
go back to reference Lan H, Updegrove A, Wilson NM, Maher GD, Shadden SC, Marsden AL (2017) A re-engineered software interface and workflow for the open source simvascular cardiovascular modeling. J Biomech Eng 140(2):024501:1–11 Lan H, Updegrove A, Wilson NM, Maher GD, Shadden SC, Marsden AL (2017) A re-engineered software interface and workflow for the open source simvascular cardiovascular modeling. J Biomech Eng 140(2):024501:1–11
20.
go back to reference Long CC (2013) Fluid–structure interaction: physiologic simulation of pulsatile ventricular assist devices using isogeometric analysis. Dissertation in University of California, San Diego Long CC (2013) Fluid–structure interaction: physiologic simulation of pulsatile ventricular assist devices using isogeometric analysis. Dissertation in University of California, San Diego
21.
go back to reference Manguoglu M, Takizawa K, Sameh AH, Tezduyar TE (2010) Solution of linear systems in arterial fluid mechanics computations with boundary layer mesh refinement. Comput Mech 46:83–89CrossRefMATH Manguoglu M, Takizawa K, Sameh AH, Tezduyar TE (2010) Solution of linear systems in arterial fluid mechanics computations with boundary layer mesh refinement. Comput Mech 46:83–89CrossRefMATH
23.
go back to reference Marsden AL, Esmaily-Moghadam M (2015) Multiscale modeling of cardiovascular flows for clinical decision support. Appl Mech Rev 67:030804CrossRef Marsden AL, Esmaily-Moghadam M (2015) Multiscale modeling of cardiovascular flows for clinical decision support. Appl Mech Rev 67:030804CrossRef
24.
go back to reference Marsden AL, Feinstein JA, Taylor CA (2008) A computational framework for derivative-free optimization of cardiovascular geometries. Comput Methods Appl Mech Eng 197:1890–905MathSciNetCrossRefMATH Marsden AL, Feinstein JA, Taylor CA (2008) A computational framework for derivative-free optimization of cardiovascular geometries. Comput Methods Appl Mech Eng 197:1890–905MathSciNetCrossRefMATH
25.
go back to reference Moghadam ME, Vignon-Clementel I, Figliola R, Marsden A (2013) A modular numerical method for implicit 0d/3d coupling in cardiovascular finite element simulations. J Comput Phys 244:63–79MathSciNetCrossRefMATH Moghadam ME, Vignon-Clementel I, Figliola R, Marsden A (2013) A modular numerical method for implicit 0d/3d coupling in cardiovascular finite element simulations. J Comput Phys 244:63–79MathSciNetCrossRefMATH
26.
go back to reference Nesbitt WS, Westein E, Tovar-Lopez FJ, Tolouei E, Mitchell A, Fu J, Carberry J, Fouras A, Jackson SP (2009) A shear gradient-dependent platelet aggregation mechanism drives thrombus formation. Nat Med 15(6):665–673CrossRef Nesbitt WS, Westein E, Tovar-Lopez FJ, Tolouei E, Mitchell A, Fu J, Carberry J, Fouras A, Jackson SP (2009) A shear gradient-dependent platelet aggregation mechanism drives thrombus formation. Nat Med 15(6):665–673CrossRef
27.
go back to reference Ramachandra AB, Kahn AM, Marsden AL (2016) Patient-specific simulations reveal significant differences in mechanical stimuli in venous and arterial coronary grafts. J Cardiovasc Trans Res 9(4):279–290CrossRef Ramachandra AB, Kahn AM, Marsden AL (2016) Patient-specific simulations reveal significant differences in mechanical stimuli in venous and arterial coronary grafts. J Cardiovasc Trans Res 9(4):279–290CrossRef
28.
go back to reference Saad Y (2003) Iterative methods for sparse linear systems. Society for industrial and applied mathematics, ISBN: 978-0-89871-534-7 Saad Y (2003) Iterative methods for sparse linear systems. Society for industrial and applied mathematics, ISBN: 978-0-89871-534-7
29.
go back to reference Sankaran S, Kim HJ, Choi G, Taylor CA (2016) Uncertainty quantification in coronary blood flow simulations: Impact of geometry, boundary conditions and blood viscosity. J Biomech 49:2540–2547CrossRef Sankaran S, Kim HJ, Choi G, Taylor CA (2016) Uncertainty quantification in coronary blood flow simulations: Impact of geometry, boundary conditions and blood viscosity. J Biomech 49:2540–2547CrossRef
30.
go back to reference Schiavazzi DE, Arbia G, Baker C, Hlavacek AM, Hsia TY, Marsden AL, Vignon-Clementel IE, of Congenital Hearts Alliance (MOCHA) Investigators TM (2016) Uncertainty quantification in virtual surgery hemodynamics predictions for single ventricle palliation. Int J Numer Methods Biomed Eng e02737:1–25 Schiavazzi DE, Arbia G, Baker C, Hlavacek AM, Hsia TY, Marsden AL, Vignon-Clementel IE, of Congenital Hearts Alliance (MOCHA) Investigators TM (2016) Uncertainty quantification in virtual surgery hemodynamics predictions for single ventricle palliation. Int J Numer Methods Biomed Eng e02737:1–25
31.
go back to reference Schiavazzi DE, Baretta A, Pennati G, Hsia T-Y, Marsden AL (2017) Patient-specific parameter estimation in single-ventricle lumped circulation models under uncertainty. Int J Numer Methods Biomed Eng 33(3):e02799CrossRef Schiavazzi DE, Baretta A, Pennati G, Hsia T-Y, Marsden AL (2017) Patient-specific parameter estimation in single-ventricle lumped circulation models under uncertainty. Int J Numer Methods Biomed Eng 33(3):e02799CrossRef
32.
go back to reference Schiavazzi DE, Doostan A, Iaccarino G, Marsden A (2017) A generalized multi-resolution expansion for uncertainty propagation with application to cardiovascular modeling. Comput Methods Appl Mech Eng 314:196–221MathSciNetCrossRef Schiavazzi DE, Doostan A, Iaccarino G, Marsden A (2017) A generalized multi-resolution expansion for uncertainty propagation with application to cardiovascular modeling. Comput Methods Appl Mech Eng 314:196–221MathSciNetCrossRef
33.
go back to reference Sengupta D, Kahn AM, Burns JC, Sankaran S, Shadden SC, Marsden AL (2012) Image-based modeling of hemodynamics in coronary artery aneurysms caused by kawasaki disease. Biomech Model Mechanobiol 11:915–932CrossRef Sengupta D, Kahn AM, Burns JC, Sankaran S, Shadden SC, Marsden AL (2012) Image-based modeling of hemodynamics in coronary artery aneurysms caused by kawasaki disease. Biomech Model Mechanobiol 11:915–932CrossRef
34.
go back to reference Taylor CA, Fonte TA, Min JK (2013) Computational fluid dynamics applied to cardiac computed tomography for noninvasive quantification of fractional flow reserve. J Am College Cardiol 61(22):2233–41CrossRef Taylor CA, Fonte TA, Min JK (2013) Computational fluid dynamics applied to cardiac computed tomography for noninvasive quantification of fractional flow reserve. J Am College Cardiol 61(22):2233–41CrossRef
35.
go back to reference Towns J, Cockerill T, Dahan M, Foster I, Gaither K, Grimshaw A, Hazlewood V, Lathrop S, Lifka D, Peterson GD, Roskies R, Scott JR, Wilkins-Diehr N (2014) Xsede: accelerating scientific discovery. Comput Sci Eng 16(5):62–74CrossRef Towns J, Cockerill T, Dahan M, Foster I, Gaither K, Grimshaw A, Hazlewood V, Lathrop S, Lifka D, Peterson GD, Roskies R, Scott JR, Wilkins-Diehr N (2014) Xsede: accelerating scientific discovery. Comput Sci Eng 16(5):62–74CrossRef
36.
go back to reference Tran JS, Schiavazzi DE, Ramachandra AB, Kahn AM, Marsden AL (2017) Automated tuning for parameter identification and uncertainty quantification in multi-scale coronary simulations. Comput Fluids 142:128–138MathSciNetCrossRefMATH Tran JS, Schiavazzi DE, Ramachandra AB, Kahn AM, Marsden AL (2017) Automated tuning for parameter identification and uncertainty quantification in multi-scale coronary simulations. Comput Fluids 142:128–138MathSciNetCrossRefMATH
37.
go back to reference Trefethen LN, Bau D (1997) Numerical Linear Algebra. SIAM Trefethen LN, Bau D (1997) Numerical Linear Algebra. SIAM
38.
go back to reference Updegrove A, Wilson NM, Merkow J, Lan H, Marsden AL, Shadden SC (2016) Simvascular: an open source pipeline for cardiovascular simulation. Annl Biomed Eng 45(3):525–541CrossRef Updegrove A, Wilson NM, Merkow J, Lan H, Marsden AL, Shadden SC (2016) Simvascular: an open source pipeline for cardiovascular simulation. Annl Biomed Eng 45(3):525–541CrossRef
39.
go back to reference Vedula V, Lee J, Xu H, Kuo C-CJ, Hsiai TK, Marsden AL (2017) A method to quantify mechanobiologic forces during zebrafish cardiac development using 4-d light sheet imaging and computational modeling. PLoS Comput Biol 13(10):e1005828CrossRef Vedula V, Lee J, Xu H, Kuo C-CJ, Hsiai TK, Marsden AL (2017) A method to quantify mechanobiologic forces during zebrafish cardiac development using 4-d light sheet imaging and computational modeling. PLoS Comput Biol 13(10):e1005828CrossRef
40.
go back to reference Yang W, Marsden AL, Ogawa MT, Sakarovitch C, Hall KK, Rabinovitch M, Feinstein JA (2018) Right ventricular stroke work correlates with outcomes in pediatric pulmonary arterial hypertension. Pulm Circ Yang W, Marsden AL, Ogawa MT, Sakarovitch C, Hall KK, Rabinovitch M, Feinstein JA (2018) Right ventricular stroke work correlates with outcomes in pediatric pulmonary arterial hypertension. Pulm Circ
Metadata
Title
Performance of preconditioned iterative linear solvers for cardiovascular simulations in rigid and deformable vessels
Authors
Jongmin Seo
Daniele E. Schiavazzi
Alison L. Marsden
Publication date
06-02-2019
Publisher
Springer Berlin Heidelberg
Published in
Computational Mechanics / Issue 3/2019
Print ISSN: 0178-7675
Electronic ISSN: 1432-0924
DOI
https://doi.org/10.1007/s00466-019-01678-3

Other articles of this Issue 3/2019

Computational Mechanics 3/2019 Go to the issue