Skip to main content
Top
Published in: Computational Mechanics 3/2019

07-02-2019 | Original Paper

Computing pointwise contact between bodies: a class of formulations based on master–master approach

Authors: Alfredo Gay Neto, Peter Wriggers

Published in: Computational Mechanics | Issue 3/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In the context of pointwise contact interaction between bodies, a formulation based on surface-to-surface description (master–master) is employed. This leads to a four-variable local contact problem, which solution is associated with general material points on contact surfaces, where contact mechanical action-reaction are represented. We propose here a methodology that permits, according to necessity, a selective dimension reduction of this local contact problem. Thus, the formulation includes curve-to-curve, point-to-surface, curve-to-surface or other contact descriptions as particular degenerations of the surface-to-surface approach. This is done by assuming convective coordinates in the original local contact problem. An operator for performing the so-called “local contact problem degeneration” is presented. It modifies automatically the dimension of the local contact problem and related requirements for its solution. The proposed method is particularly useful for handling singularity scenarios. It also creates a possibility for representing conformal contact by pointwise actions on a non-uniqueness scenario. We present applications and examples that demonstrate benefits for beam-to-beam contact. Ideas and developments, however, are general and may be applied to other geometries of contacting bodies.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Wriggers P (2002) Computational contact mechanics. Wiley, West SussexMATH Wriggers P (2002) Computational contact mechanics. Wiley, West SussexMATH
2.
go back to reference Laursen TA (2003) Computational contact and impact mechanics fundamentals of modeling interfacial phenomena in nonlinear finite element analysis. Springer, BerlinMATH Laursen TA (2003) Computational contact and impact mechanics fundamentals of modeling interfacial phenomena in nonlinear finite element analysis. Springer, BerlinMATH
3.
go back to reference Francavilla A, Zienkiewicz OC (1975) A note on numerical computation of elastic contact problems. Int J Numer Methods Eng 9:913–924CrossRef Francavilla A, Zienkiewicz OC (1975) A note on numerical computation of elastic contact problems. Int J Numer Methods Eng 9:913–924CrossRef
4.
go back to reference Stadter JT, Weiss RO (1979) Analysis of contact through finite element gaps. Comput Struct 10:867–873CrossRefMATH Stadter JT, Weiss RO (1979) Analysis of contact through finite element gaps. Comput Struct 10:867–873CrossRefMATH
6.
go back to reference Wriggers P, Van TV, Stein E (1990) Finite-element-formulation of large deformation impact-contact problems with friction. Comput Struct 37:319–333CrossRefMATH Wriggers P, Van TV, Stein E (1990) Finite-element-formulation of large deformation impact-contact problems with friction. Comput Struct 37:319–333CrossRefMATH
7.
go back to reference Simo JC, Wriggers P, Taylor RL (1985) A perturbed Lagrangian formulation for the finite element solution of contact problems. Comput Methods Appl Mech Eng 50:163–180MathSciNetCrossRefMATH Simo JC, Wriggers P, Taylor RL (1985) A perturbed Lagrangian formulation for the finite element solution of contact problems. Comput Methods Appl Mech Eng 50:163–180MathSciNetCrossRefMATH
8.
go back to reference Bandeira AA, Pimenta PM, Wriggers P (2004) Numerical derivation of contact mechanics interface laws using a finite Element approach for large 3D deformation. Int J Numer Meth Eng 59:173–195MathSciNetCrossRefMATH Bandeira AA, Pimenta PM, Wriggers P (2004) Numerical derivation of contact mechanics interface laws using a finite Element approach for large 3D deformation. Int J Numer Meth Eng 59:173–195MathSciNetCrossRefMATH
9.
go back to reference Bathe KJ, Chaudhary AB (1985) A solution method for planar and axisymmetric contact problems. Int J Numer Methods Eng 21:65–88CrossRefMATH Bathe KJ, Chaudhary AB (1985) A solution method for planar and axisymmetric contact problems. Int J Numer Methods Eng 21:65–88CrossRefMATH
11.
go back to reference Puso MA, Laursen TA (2004) A mortar segment-to-segment contact method for large deformation solid mechanics. Comput Methods Appl Mech Eng 193:601–629CrossRefMATH Puso MA, Laursen TA (2004) A mortar segment-to-segment contact method for large deformation solid mechanics. Comput Methods Appl Mech Eng 193:601–629CrossRefMATH
12.
go back to reference Fischer KA, Wriggers P (2005) Frictionless 2d contact formulations for finite deformations based on the mortar method. Comput Mech 36:226–244CrossRefMATH Fischer KA, Wriggers P (2005) Frictionless 2d contact formulations for finite deformations based on the mortar method. Comput Mech 36:226–244CrossRefMATH
13.
go back to reference De Lorenzis L, Wriggers P, Zavarise G (2012) A mortar formulation for 3D large deformation contact using NURBS-based isogeometric analysis and the augmented Lagrangian method. Comput Mech 49(1):1–20MathSciNetCrossRefMATH De Lorenzis L, Wriggers P, Zavarise G (2012) A mortar formulation for 3D large deformation contact using NURBS-based isogeometric analysis and the augmented Lagrangian method. Comput Mech 49(1):1–20MathSciNetCrossRefMATH
14.
go back to reference Popp A et al (2010) A dual mortar approach for 3D finite deformation contact with consistent linearization. Int J Numer Meth Eng 83:1428–1465MathSciNetCrossRefMATH Popp A et al (2010) A dual mortar approach for 3D finite deformation contact with consistent linearization. Int J Numer Meth Eng 83:1428–1465MathSciNetCrossRefMATH
15.
go back to reference Popp A, Gee WM, Wall WA (2011) Finite deformation contact based on a 3D dual mortar and semi-smooth newton approach. In: Zavarise G, Wriggers P (eds) Trends in computational contact mechanics. Springer, Berlin, pp 57–77CrossRef Popp A, Gee WM, Wall WA (2011) Finite deformation contact based on a 3D dual mortar and semi-smooth newton approach. In: Zavarise G, Wriggers P (eds) Trends in computational contact mechanics. Springer, Berlin, pp 57–77CrossRef
16.
go back to reference Wriggers P, Zavarise G (1997) On contact between three-dimensional beams undergoing large deflections. Commun Numer Methods Eng 13:429–438MathSciNetCrossRefMATH Wriggers P, Zavarise G (1997) On contact between three-dimensional beams undergoing large deflections. Commun Numer Methods Eng 13:429–438MathSciNetCrossRefMATH
17.
go back to reference Zavarise G, Wriggers P (2000) Contact with friction between beams in 3-D space. Int J Numer Methods Eng 49:977–1006CrossRefMATH Zavarise G, Wriggers P (2000) Contact with friction between beams in 3-D space. Int J Numer Methods Eng 49:977–1006CrossRefMATH
18.
19.
20.
go back to reference Litewka P (2007) Hermite polynomial smoothing in beam-to-beam frictional contact. Comput Mech 40:815–826CrossRefMATH Litewka P (2007) Hermite polynomial smoothing in beam-to-beam frictional contact. Comput Mech 40:815–826CrossRefMATH
21.
go back to reference Konyukhov A, Schweizerhof K (2010) Geometrically exact covariant approach for contact between curves. Comput Methods Appl Mech Eng 199:2510–2531MathSciNetCrossRefMATH Konyukhov A, Schweizerhof K (2010) Geometrically exact covariant approach for contact between curves. Comput Methods Appl Mech Eng 199:2510–2531MathSciNetCrossRefMATH
22.
23.
24.
go back to reference Zavarise G, Wriggers P (1998) A segment-to-segment contact strategy. Math Comput Model 28(4–8):497–515CrossRefMATH Zavarise G, Wriggers P (1998) A segment-to-segment contact strategy. Math Comput Model 28(4–8):497–515CrossRefMATH
25.
go back to reference Zavarise G, de Lorenzis L (2009) A modified node-to-segment algorithm passing the contact patch test. Int J Numer Methods Eng 79:379–416CrossRefMATH Zavarise G, de Lorenzis L (2009) A modified node-to-segment algorithm passing the contact patch test. Int J Numer Methods Eng 79:379–416CrossRefMATH
26.
go back to reference Gay Neto A, Pimenta PM, Wriggers P (2016) A Master-surface to master-surface formulation for beam to beam contact. Part I: frictionless interaction. Comput Methods Appl Mech Eng 303:400–429MathSciNetCrossRefMATH Gay Neto A, Pimenta PM, Wriggers P (2016) A Master-surface to master-surface formulation for beam to beam contact. Part I: frictionless interaction. Comput Methods Appl Mech Eng 303:400–429MathSciNetCrossRefMATH
27.
go back to reference Gay Neto A, Pimenta PM, Wriggers P (2017) A master-surface to master-surface formulation for beam to beam contact. Part II: frictional interaction. Comput Methods Appl Mech Eng 319:146–174MathSciNetCrossRefMATH Gay Neto A, Pimenta PM, Wriggers P (2017) A master-surface to master-surface formulation for beam to beam contact. Part II: frictional interaction. Comput Methods Appl Mech Eng 319:146–174MathSciNetCrossRefMATH
30.
go back to reference Durville D (2012) Contact-friction modeling within elastic beam assemblies: an application to knot tightening. Comput Mech 49:687–707MathSciNetCrossRefMATH Durville D (2012) Contact-friction modeling within elastic beam assemblies: an application to knot tightening. Comput Mech 49:687–707MathSciNetCrossRefMATH
31.
go back to reference Durville D (2010) Simulation of the mechanical behaviour of woven fabrics at the scale of fibers. Int J Mater Form 3(Suppl. 2):S1241–S1251CrossRef Durville D (2010) Simulation of the mechanical behaviour of woven fabrics at the scale of fibers. Int J Mater Form 3(Suppl. 2):S1241–S1251CrossRef
32.
33.
go back to reference Chamekh M, Mani-Aouadi S, Moakher M (2009) Modeling and numerical treatment of elastic rods with frictionless self-contact. Comput Methods Appl Mech Eng 198:3751–3764MathSciNetCrossRefMATH Chamekh M, Mani-Aouadi S, Moakher M (2009) Modeling and numerical treatment of elastic rods with frictionless self-contact. Comput Methods Appl Mech Eng 198:3751–3764MathSciNetCrossRefMATH
34.
go back to reference Meier C, Popp A, Wall WA (2016) A finite element approach for the line-to-line contact interaction of thin beams with arbitrary orientation. Comput Methods Appl Mech Eng 308:377–413MathSciNetCrossRef Meier C, Popp A, Wall WA (2016) A finite element approach for the line-to-line contact interaction of thin beams with arbitrary orientation. Comput Methods Appl Mech Eng 308:377–413MathSciNetCrossRef
35.
go back to reference Meier C, Wall WA, Popp A (2017) A unified approach for beam-to-beam contact. Comput Methods Appl Mech Eng 315(1):972–1010MathSciNetCrossRef Meier C, Wall WA, Popp A (2017) A unified approach for beam-to-beam contact. Comput Methods Appl Mech Eng 315(1):972–1010MathSciNetCrossRef
36.
go back to reference Konyukhov A (2015) Geometrically exact theory of contact interactions—applications with various methods FEM and FCM. J Appl Math Phys 3:1022–1031CrossRef Konyukhov A (2015) Geometrically exact theory of contact interactions—applications with various methods FEM and FCM. J Appl Math Phys 3:1022–1031CrossRef
37.
go back to reference Gay Neto A, Pimenta PM, Wriggers P (2018) Contact between spheres and general surfaces. Comput Methods Appl Mech Eng 328:686–716MathSciNetCrossRef Gay Neto A, Pimenta PM, Wriggers P (2018) Contact between spheres and general surfaces. Comput Methods Appl Mech Eng 328:686–716MathSciNetCrossRef
39.
go back to reference Gay Neto A (2016) Dynamics of offshore risers using a geometrically-exact beam model with hydrodynamic loads and contact with the seabed. Eng Struct 125:438–454CrossRef Gay Neto A (2016) Dynamics of offshore risers using a geometrically-exact beam model with hydrodynamic loads and contact with the seabed. Eng Struct 125:438–454CrossRef
Metadata
Title
Computing pointwise contact between bodies: a class of formulations based on master–master approach
Authors
Alfredo Gay Neto
Peter Wriggers
Publication date
07-02-2019
Publisher
Springer Berlin Heidelberg
Published in
Computational Mechanics / Issue 3/2019
Print ISSN: 0178-7675
Electronic ISSN: 1432-0924
DOI
https://doi.org/10.1007/s00466-019-01680-9

Other articles of this Issue 3/2019

Computational Mechanics 3/2019 Go to the issue