Skip to main content
Top
Published in: Computational Mechanics 3/2019

18-02-2019 | Original Paper

Bi-potential and co-rotational formulations applied for real time simulation involving friction and large deformation

Authors: Lei Peng, Zhi-Qiang Feng, Pierre Joli, Christine Renaud, Wan-Yun Xu

Published in: Computational Mechanics | Issue 3/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This paper concerns mainly numerical aspects for the real-time manipulation of deformable objects in the context of virtual surgery. The bi-potential method in the form of augmented Lagrangian is extended to solve multiple contact problems within real time computing requirements. Nonlinearities of large deformation are also included to describe the mechanical behavior of soft tissues. To obtain both accuracy and realism, the approximated co-rotational finite element method is applied to make a compromise between accuracy and computational cost. It is difficult to detect collisions between virtual objects at interactive rates. In this work, we use an optimal bounding volume hierarchy technique to acquire a good detecting efficiency. Two numerical examples are carried out to illustrate the efficiency, robustness and accuracy of the presented approaches.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Salisbury K, Conti F, Barbagli F (2004) Haptic rendering: introductory concepts. Comput Graph Appl 24:24–32CrossRef Salisbury K, Conti F, Barbagli F (2004) Haptic rendering: introductory concepts. Comput Graph Appl 24:24–32CrossRef
2.
go back to reference Chen JX, Wechsler H, Pullen JM, Zhu Y (2001) Knee surgery assistance: patient model construction, motion simulation, and biomechanical visualization. IEEE Trans Biomed Eng 48:1042–1052CrossRef Chen JX, Wechsler H, Pullen JM, Zhu Y (2001) Knee surgery assistance: patient model construction, motion simulation, and biomechanical visualization. IEEE Trans Biomed Eng 48:1042–1052CrossRef
3.
go back to reference Lee TY, Sun YN, Lin YC, Lin L (1999) Three-dimensional facial model reconstruction and plastic surgery simulation. IEEE Trans Inf Technol Biomed 3:214–220CrossRef Lee TY, Sun YN, Lin YC, Lin L (1999) Three-dimensional facial model reconstruction and plastic surgery simulation. IEEE Trans Inf Technol Biomed 3:214–220CrossRef
4.
go back to reference Comas O, Taylor ZA, Allard J, Ourselin S, Cotin S, Passenger J (2008) Efficient nonlinear FEM for soft tissue modelling and its GPU implementation within the open source framework SOFA. In: Bello F, Edwards PJ (eds) Biomedical simulation, Springer, Heidelberg, pp 28–39 Comas O, Taylor ZA, Allard J, Ourselin S, Cotin S, Passenger J (2008) Efficient nonlinear FEM for soft tissue modelling and its GPU implementation within the open source framework SOFA. In: Bello F, Edwards PJ (eds) Biomedical simulation, Springer, Heidelberg, pp 28–39
5.
go back to reference Okamura AM, Simone C, O’Leary MD (2004) Force modeling for needle insertion into soft tissue. IEEE Trans Biomed Eng 51:1707–1716CrossRef Okamura AM, Simone C, O’Leary MD (2004) Force modeling for needle insertion into soft tissue. IEEE Trans Biomed Eng 51:1707–1716CrossRef
6.
go back to reference Morris D, Sewell C, Blevins N, Barbagli F, Salisbury K (2004) A collaborative virtual environment for the simulation of temporal bone surgery. In: Barillot C, Haynor DR, Hellier P (eds) Proceedings of medical image computing and computer-assisted intervention. Springer, Heidelberg, pp 319–327 Morris D, Sewell C, Blevins N, Barbagli F, Salisbury K (2004) A collaborative virtual environment for the simulation of temporal bone surgery. In: Barillot C, Haynor DR, Hellier P (eds) Proceedings of medical image computing and computer-assisted intervention. Springer, Heidelberg, pp 319–327
7.
go back to reference Wang Y, Xiong Y, Xu K, Liu D (2013) vKASS: a surgical procedure simulation system for arthroscopic anterior cruciate ligament reconstruction. Comput Animat Virtual Worlds 24:25–41CrossRef Wang Y, Xiong Y, Xu K, Liu D (2013) vKASS: a surgical procedure simulation system for arthroscopic anterior cruciate ligament reconstruction. Comput Animat Virtual Worlds 24:25–41CrossRef
8.
go back to reference Saupin G, Duriez C, Cotin S (2008) Contact model for haptic medical simulations. In: International symposium on biomedical simulation, Spinger, pp 157–165 Saupin G, Duriez C, Cotin S (2008) Contact model for haptic medical simulations. In: International symposium on biomedical simulation, Spinger, pp 157–165
9.
go back to reference Meier U, Lopez O, Monserrat C, Juan MC, Alcaniz M (2005) Real-time deformable models for surgery simulation: a survey. Comput Methods Programs Biomed 77:183–197CrossRef Meier U, Lopez O, Monserrat C, Juan MC, Alcaniz M (2005) Real-time deformable models for surgery simulation: a survey. Comput Methods Programs Biomed 77:183–197CrossRef
10.
go back to reference Nealen A, Müller M, Keiser R, Boxerman E, Carlson M (2006) Physically based deformable models in computer graphics. Comput Graph Forum 25:809–836CrossRef Nealen A, Müller M, Keiser R, Boxerman E, Carlson M (2006) Physically based deformable models in computer graphics. Comput Graph Forum 25:809–836CrossRef
11.
go back to reference Duriez C, Dubois F, Kheddar A, Andriot C (2006) Realistic haptic rendering of interacting deformable objects in virtual environments. IEEE Trans Vis Comput Graph 12:36–47CrossRef Duriez C, Dubois F, Kheddar A, Andriot C (2006) Realistic haptic rendering of interacting deformable objects in virtual environments. IEEE Trans Vis Comput Graph 12:36–47CrossRef
12.
go back to reference Spillman J, Becker M, Teschner M (2007) Non-iterative computation of contact forces for deformable objects. J WSCG 15:33–40 Spillman J, Becker M, Teschner M (2007) Non-iterative computation of contact forces for deformable objects. J WSCG 15:33–40
13.
go back to reference Kuchenbecker KJ, Fiene J, Niemeyer G (2006) Improving contact realism through event-based haptic feedback. IEEE Trans Vis Comput Graph 12:219–230CrossRef Kuchenbecker KJ, Fiene J, Niemeyer G (2006) Improving contact realism through event-based haptic feedback. IEEE Trans Vis Comput Graph 12:219–230CrossRef
14.
go back to reference Courtecuisse H, Allard J, Kerfriden P, Bordas S P A, cotin S, Duriez C (2014) Real-time simulation of contact and cutting of heterogeneous soft-tissues. Med Image Anal 18:394–410CrossRef Courtecuisse H, Allard J, Kerfriden P, Bordas S P A, cotin S, Duriez C (2014) Real-time simulation of contact and cutting of heterogeneous soft-tissues. Med Image Anal 18:394–410CrossRef
15.
go back to reference Courtecuisse H, Jung H, Allard J, Duriez C, Lee DY, Cotin S (2010) GPU-based real-time soft tissue deformation with cutting and haptic feedback. Prog Biophys Mol Biol 103:159–168CrossRef Courtecuisse H, Jung H, Allard J, Duriez C, Lee DY, Cotin S (2010) GPU-based real-time soft tissue deformation with cutting and haptic feedback. Prog Biophys Mol Biol 103:159–168CrossRef
16.
go back to reference Garre C, Otaduy MA (2010) Haptic rendering of objects with rigid and deformable parts. Comput Graph 34:689–697CrossRef Garre C, Otaduy MA (2010) Haptic rendering of objects with rigid and deformable parts. Comput Graph 34:689–697CrossRef
17.
go back to reference Francavilla A, Zienkiewicz OC (1975) A note on numerical computation of elastic contact problems. Int J Numer Methods Eng 9:913–924CrossRef Francavilla A, Zienkiewicz OC (1975) A note on numerical computation of elastic contact problems. Int J Numer Methods Eng 9:913–924CrossRef
18.
go back to reference Otaduy MA, Lin MC (2006) A modular haptic rendering algorithm for stable and transparent 6-dof manipulation. IEEE Trans Robot 22:751–762CrossRef Otaduy MA, Lin MC (2006) A modular haptic rendering algorithm for stable and transparent 6-dof manipulation. IEEE Trans Robot 22:751–762CrossRef
19.
go back to reference Redon S, Kheddar A, Coquillart S (2002) Gauss’ least constraints principle and rigid body simulations. In: IEEE international conference on proceedings of robotics and automation, pp 517–522 Redon S, Kheddar A, Coquillart S (2002) Gauss’ least constraints principle and rigid body simulations. In: IEEE international conference on proceedings of robotics and automation, pp 517–522
20.
go back to reference Saupin G, Duriez C, Cotin S, Grisoni L (2008) Efficient contact modeling using compliance warping. In: Computer graphics international, Istanbul, Turkey Saupin G, Duriez C, Cotin S, Grisoni L (2008) Efficient contact modeling using compliance warping. In: Computer graphics international, Istanbul, Turkey
21.
go back to reference González D, Alfaro I, Quesada C, Cueto E, Chinesta F (2015) Computational vademecums for the real-time simulation of haptic collision between nonlinear solids. Comput Methods Appl Mech Eng 283:210–223CrossRefMATH González D, Alfaro I, Quesada C, Cueto E, Chinesta F (2015) Computational vademecums for the real-time simulation of haptic collision between nonlinear solids. Comput Methods Appl Mech Eng 283:210–223CrossRefMATH
22.
go back to reference Giacoma A, Dureisseix D, Gravouil A, Rochette M (2015) Toward an optimal a priori reduced basis strategy for frictional contact problems with LATIN solver. Comput Methods Appl Mech Eng 283:1357–1381MathSciNetCrossRefMATH Giacoma A, Dureisseix D, Gravouil A, Rochette M (2015) Toward an optimal a priori reduced basis strategy for frictional contact problems with LATIN solver. Comput Methods Appl Mech Eng 283:1357–1381MathSciNetCrossRefMATH
23.
go back to reference De Saxcé G, Feng Z-Q (1998) The bipotential method: a constructive approach to design the complete contact law with friction and improved numerical algorithms. Math Comput Model 28:225–245MathSciNetCrossRefMATH De Saxcé G, Feng Z-Q (1998) The bipotential method: a constructive approach to design the complete contact law with friction and improved numerical algorithms. Math Comput Model 28:225–245MathSciNetCrossRefMATH
24.
go back to reference Acary V, Brogliato B (2008) Numerical methods for nonsmooth dynamical systems. Springer, HeidelbergCrossRefMATH Acary V, Brogliato B (2008) Numerical methods for nonsmooth dynamical systems. Springer, HeidelbergCrossRefMATH
25.
go back to reference Sederberg TW, Parry SR (1986) Free-form deformation of solid geometric models. In: ACM SIGGRAPH computer graphics. ACM, pp 151–160 Sederberg TW, Parry SR (1986) Free-form deformation of solid geometric models. In: ACM SIGGRAPH computer graphics. ACM, pp 151–160
26.
go back to reference Gibson S, Fyock C, Grimson E, Kanade T, Kikinis R, Lauer H, McKenzie N, Mor A, Nakajima S, Ohkami H et al (1998) Volumetric object modeling for surgical simulation. Med Image Anal 2:121–132CrossRef Gibson S, Fyock C, Grimson E, Kanade T, Kikinis R, Lauer H, McKenzie N, Mor A, Nakajima S, Ohkami H et al (1998) Volumetric object modeling for surgical simulation. Med Image Anal 2:121–132CrossRef
27.
go back to reference Suzuki S, Suzuki N, Hattori A, Uchiyama A, Kobayashi S (2004) Sphere-filled organ model for virtual surgery system. IEEE Trans Med Imaging 23:714–722CrossRef Suzuki S, Suzuki N, Hattori A, Uchiyama A, Kobayashi S (2004) Sphere-filled organ model for virtual surgery system. IEEE Trans Med Imaging 23:714–722CrossRef
28.
go back to reference Waters K (1987) A muscle model for animation three-dimensional facial expression. Comput Graph 21:17–24CrossRef Waters K (1987) A muscle model for animation three-dimensional facial expression. Comput Graph 21:17–24CrossRef
29.
go back to reference Chen DT, Zeltzer D (1992) Pump it up. In: Computer animation of a biomechanically based model of muscle using the finite element method. ACM Chen DT, Zeltzer D (1992) Pump it up. In: Computer animation of a biomechanically based model of muscle using the finite element method. ACM
30.
go back to reference Cotin S, Delingette H, Ayache N (1999) Real-time elastic deformations of soft tissues for surgery simulation. IEEE Trans Vis Comput Graph 5:62–73CrossRefMATH Cotin S, Delingette H, Ayache N (1999) Real-time elastic deformations of soft tissues for surgery simulation. IEEE Trans Vis Comput Graph 5:62–73CrossRefMATH
31.
go back to reference Celniker G, Gossard D (1991) Deformable curve and surface finite-elements for free-form shape design. In: ACM SIGGRAPH computer graphics. ACM, pp 257–266 Celniker G, Gossard D (1991) Deformable curve and surface finite-elements for free-form shape design. In: ACM SIGGRAPH computer graphics. ACM, pp 257–266
32.
go back to reference James D, Pai D, Dinesh K (1999) ArtDefo: accurate real time deformable objects. In: Proceedings of the 26th annual conference on computer graphics and interactive techniques, ACM, pp 65–72 James D, Pai D, Dinesh K (1999) ArtDefo: accurate real time deformable objects. In: Proceedings of the 26th annual conference on computer graphics and interactive techniques, ACM, pp 65–72
34.
go back to reference Niroomandi S, Alfaro I, Cueto E, Chinesta F (2008) Real-time deformable models of non-linear tissues by model reduction techniques. Comput Method Programs Biomed 91:223–231CrossRef Niroomandi S, Alfaro I, Cueto E, Chinesta F (2008) Real-time deformable models of non-linear tissues by model reduction techniques. Comput Method Programs Biomed 91:223–231CrossRef
35.
go back to reference Müller M, Dorsey J, Mcmillan L, Jagnow R, Cutler B (2002) Stable real-time deformations. In: Proceedings of the 2002 ACM SIGGRAPH/Eurographics symposium on computer animation, ACM, pp 49–54 Müller M, Dorsey J, Mcmillan L, Jagnow R, Cutler B (2002) Stable real-time deformations. In: Proceedings of the 2002 ACM SIGGRAPH/Eurographics symposium on computer animation, ACM, pp 49–54
36.
go back to reference Bedkowski J, Masowski A (2012) GPGPU computation in mobile robot applications. Int J Electr Eng Inf 4:15–26 Bedkowski J, Masowski A (2012) GPGPU computation in mobile robot applications. Int J Electr Eng Inf 4:15–26
37.
go back to reference Luque RG, Comba JLD, Freitas CMDS (2005) Broad-phase collision detection using semi-adjusting BSP-trees. In: Proceedings of the 2005 symposium on interactive 3D graphics and games, ACM, pp 179–186 Luque RG, Comba JLD, Freitas CMDS (2005) Broad-phase collision detection using semi-adjusting BSP-trees. In: Proceedings of the 2005 symposium on interactive 3D graphics and games, ACM, pp 179–186
38.
go back to reference Bergen G (1997) Efficient collision detection of complex deformable models using AABB trees. J Graph Tools 4:1–13CrossRefMATH Bergen G (1997) Efficient collision detection of complex deformable models using AABB trees. J Graph Tools 4:1–13CrossRefMATH
39.
go back to reference Cameron S (1997) Enhancing GJK: Computing minimum and penetration distances between convex polyhedra. In: ICRA, Citeseer, pp 20–25 Cameron S (1997) Enhancing GJK: Computing minimum and penetration distances between convex polyhedra. In: ICRA, Citeseer, pp 20–25
40.
go back to reference Govindaraju NK, Knott D, Jain N, Kabul I, Tamstorf R, Gayle R, Lin MC, Manocha D (2005) Interactive collision detection between deformable models using chromatic decomposition. In: ACM transactions on graphics, ACM, pp 991–999 Govindaraju NK, Knott D, Jain N, Kabul I, Tamstorf R, Gayle R, Lin MC, Manocha D (2005) Interactive collision detection between deformable models using chromatic decomposition. In: ACM transactions on graphics, ACM, pp 991–999
41.
42.
go back to reference De Saxcé G, Feng Z-Q (1991) New inequality and functional for contact with friction: the implicit standard material approach. Mech Struct Mach 19:301–325MathSciNetCrossRef De Saxcé G, Feng Z-Q (1991) New inequality and functional for contact with friction: the implicit standard material approach. Mech Struct Mach 19:301–325MathSciNetCrossRef
43.
go back to reference Jourdan F, Alart P, Jean M (1998) A Gauss-Seidel like algorithm to solve frictional contact problems. Comput Methods Appl Mech Eng 155:31–47MathSciNetCrossRefMATH Jourdan F, Alart P, Jean M (1998) A Gauss-Seidel like algorithm to solve frictional contact problems. Comput Methods Appl Mech Eng 155:31–47MathSciNetCrossRefMATH
Metadata
Title
Bi-potential and co-rotational formulations applied for real time simulation involving friction and large deformation
Authors
Lei Peng
Zhi-Qiang Feng
Pierre Joli
Christine Renaud
Wan-Yun Xu
Publication date
18-02-2019
Publisher
Springer Berlin Heidelberg
Published in
Computational Mechanics / Issue 3/2019
Print ISSN: 0178-7675
Electronic ISSN: 1432-0924
DOI
https://doi.org/10.1007/s00466-019-01672-9

Other articles of this Issue 3/2019

Computational Mechanics 3/2019 Go to the issue