Skip to main content
Top

2021 | OriginalPaper | Chapter

Performance Study on Flat Plate Solar Water Heater with Copper Nanoparticles

Authors : R. Praveen Bharathwaj, M. B. Varun Pradeep, Joe Jones Raju, A. Satheesh, P. Padmanathan

Published in: Proceedings of International Conference on Thermofluids

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Evaluating the improvement in efficiency and heat transfer rate in heat exchangers using additives has been the centre of attraction for many researchers. In this study, a solar flat plate water heater is modelled using ANSYS Fluent, and the simulated results are compared with experimental data. For the simulation, a single-phase model is used with equivalent correlations for the thermo-physical properties of the nanofluid. Using water as the working fluid, the performance was evaluated for a set flow rate and solar insolation. The study is extended by modelling the same in ANSYS Fluent and using water and CuNP mixture as working fluid to analyse the enhancement of heat transfer in thermal absorbers. The pressure drop in the system is analysed and the data is used to justify the usage of nanoparticles in solar thermal absorbers. The efficiency of the system for various volume fractions of nanoparticles is optimized by introducing an efficiency index.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
2.
go back to reference Godson L et al (2010) Enhancement of heat transfer using nanofluids—an overview. Renew Sustain Energy Rev 14(2):629–641 Godson L et al (2010) Enhancement of heat transfer using nanofluids—an overview. Renew Sustain Energy Rev 14(2):629–641
3.
go back to reference Soumen J, Salehi-Khojin A, Zhong WH (2007) Enhancement of fluid thermal conductivity by the addition of single and hybrid nano-additives. Thermochim Acta 462(1–2):45–55 Soumen J, Salehi-Khojin A, Zhong WH (2007) Enhancement of fluid thermal conductivity by the addition of single and hybrid nano-additives. Thermochim Acta 462(1–2):45–55
4.
go back to reference Yimin X, Li Q (2000) Heat transfer enhancement of nanofluids. Int J Heat Fluid Flow 21(1):58–64 Yimin X, Li Q (2000) Heat transfer enhancement of nanofluids. Int J Heat Fluid Flow 21(1):58–64
5.
go back to reference Sirajuddin SMR et al (2017) A review paper on electricity generation from solar energy. Int J Res Appl Sci Eng Technol 5(issue IX):1884–1889 Sirajuddin SMR et al (2017) A review paper on electricity generation from solar energy. Int J Res Appl Sci Eng Technol 5(issue IX):1884–1889
6.
go back to reference Rehena N, Alim MA (2014) Thermal performance of nanofluid filled solar flat plate collector. Int J Heat Technol 33(2):17–24 Rehena N, Alim MA (2014) Thermal performance of nanofluid filled solar flat plate collector. Int J Heat Technol 33(2):17–24
7.
go back to reference Ranjith PV, Karim AA (2016) A comparative study on the experimental and computational analysis of solar flat plate collector using an alternate working fluid. Procedia Technol 24:546–553 Ranjith PV, Karim AA (2016) A comparative study on the experimental and computational analysis of solar flat plate collector using an alternate working fluid. Procedia Technol 24:546–553
8.
go back to reference Chaji H et al (2013) Experimental study on thermal efficiency of flat plate solar collector using TiO2/water nanofluid. Mod Appl Sci 7(10):60–69 Chaji H et al (2013) Experimental study on thermal efficiency of flat plate solar collector using TiO2/water nanofluid. Mod Appl Sci 7(10):60–69
9.
go back to reference Yuvarajan D, Munuswamy DB (2016) Analysis on the influence of nanoparticles of alumina, copper oxide, and zirconium oxide on the performance of a flat-plate solar water heater. Energy Fuels 30(11):9908–9913 Yuvarajan D, Munuswamy DB (2016) Analysis on the influence of nanoparticles of alumina, copper oxide, and zirconium oxide on the performance of a flat-plate solar water heater. Energy Fuels 30(11):9908–9913
10.
go back to reference Joe MJ, Iniyan S (2015) Performance of copper oxide/water nanofluid in a flat plate solar water heater under natural and forced circulations. Energy Convers Manage 95:160–169 Joe MJ, Iniyan S (2015) Performance of copper oxide/water nanofluid in a flat plate solar water heater under natural and forced circulations. Energy Convers Manage 95:160–169
11.
go back to reference Heera P, Shanmugam S (2015) Nanoparticle characterization and application: an overview. Int J Curr Microbiol App Sci 4(8):379–386 Heera P, Shanmugam S (2015) Nanoparticle characterization and application: an overview. Int J Curr Microbiol App Sci 4(8):379–386
12.
go back to reference Lee S et al (1999) Measuring thermal conductivity of fluids containing oxide nanoparticles. J Heat Transf 121(2):280–289CrossRef Lee S et al (1999) Measuring thermal conductivity of fluids containing oxide nanoparticles. J Heat Transf 121(2):280–289CrossRef
13.
go back to reference Singh D et al (2009) An investigation of silicon carbide-water nanofluid for heat transfer applications. J Appl Phys 105(6):064306 Singh D et al (2009) An investigation of silicon carbide-water nanofluid for heat transfer applications. J Appl Phys 105(6):064306
14.
go back to reference Swaminathan P et al (2014) Formation and characterization of thermal and electrical properties of CuO and ZnO nanofluids in xanthan gum. Colloids Surf 443:37–43CrossRef Swaminathan P et al (2014) Formation and characterization of thermal and electrical properties of CuO and ZnO nanofluids in xanthan gum. Colloids Surf 443:37–43CrossRef
15.
go back to reference Esfe MH et al (2015) An experimental study on the effect of diameter on thermal conductivity and dynamic viscosity of Fe/water nanofluids. J Thermal Anal Calorim 119(3):1817–1824 Esfe MH et al (2015) An experimental study on the effect of diameter on thermal conductivity and dynamic viscosity of Fe/water nanofluids. J Thermal Anal Calorim 119(3):1817–1824
16.
go back to reference Yimin X, Li Q (2000) Heat transfer enhancement of nanofluids. Int J Heat Fluid Flow 21(1):58–64CrossRef Yimin X, Li Q (2000) Heat transfer enhancement of nanofluids. Int J Heat Fluid Flow 21(1):58–64CrossRef
17.
go back to reference Gupte SK, Advani SG, Huq P (1995) Role of micro-convection due to non-affine motion of particles in a mono-disperse suspension. Int J Heat Mass Transf 38(16):2945–2958CrossRef Gupte SK, Advani SG, Huq P (1995) Role of micro-convection due to non-affine motion of particles in a mono-disperse suspension. Int J Heat Mass Transf 38(16):2945–2958CrossRef
18.
go back to reference Timofeeva EV et al (2007) Thermal conductivity and particle agglomeration in alumina nanofluids: experiment and theory. Phys Rev E 76(6):061203MathSciNetCrossRef Timofeeva EV et al (2007) Thermal conductivity and particle agglomeration in alumina nanofluids: experiment and theory. Phys Rev E 76(6):061203MathSciNetCrossRef
19.
go back to reference Choon PB, Cho YI (1998) Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles. Experim Heat Transf Int J 11(2):151–170 Choon PB, Cho YI (1998) Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles. Experim Heat Transf Int J 11(2):151–170
20.
go back to reference Godson AL et al (2009) Experimental study on forced convective heat transfer with low volume fraction of CuO/water nanofluid. Energies 2(1):97–119CrossRef Godson AL et al (2009) Experimental study on forced convective heat transfer with low volume fraction of CuO/water nanofluid. Energies 2(1):97–119CrossRef
21.
go back to reference Seok Pil J, Choi SU (2004) Role of Brownian motion in the enhanced thermal conductivity of nanofluids. Appl Phys Lett 84(21): 4316–4318 Seok Pil J, Choi SU (2004) Role of Brownian motion in the enhanced thermal conductivity of nanofluids. Appl Phys Lett 84(21): 4316–4318
22.
go back to reference Wei WANG (2017) A comprehensive model for the enhanced thermal conductivity of nanofluids. J Adv Res Phys 3(2) Wei WANG (2017) A comprehensive model for the enhanced thermal conductivity of nanofluids. J Adv Res Phys 3(2)
23.
go back to reference William E, Fish J, Keblinski P (2006) Role of Brownian motion hydrodynamics on nanofluid thermal conductivity. Appl Phys Lett 88(9):093116 William E, Fish J, Keblinski P (2006) Role of Brownian motion hydrodynamics on nanofluid thermal conductivity. Appl Phys Lett 88(9):093116
24.
go back to reference Bao Y (2008) Thermal conductivity equations based on Brownian motion in suspensions of nanoparticles (nanofluids). J Heat Transf 130(4):042408 Bao Y (2008) Thermal conductivity equations based on Brownian motion in suspensions of nanoparticles (nanofluids). J Heat Transf 130(4):042408
25.
go back to reference Maxwell JC (1873) A treatise on electricity and magnetism. Clarendon Press, OxfordMATH Maxwell JC (1873) A treatise on electricity and magnetism. Clarendon Press, OxfordMATH
26.
go back to reference Xuan Y, Roetzel W (2000) Conceptions for heat transfer correlation of nanofluids. Int J Heat Mass Transf 43:3701–3707CrossRef Xuan Y, Roetzel W (2000) Conceptions for heat transfer correlation of nanofluids. Int J Heat Mass Transf 43:3701–3707CrossRef
27.
go back to reference Mahbubul IM et al (2013) Thermophysical properties and heat transfer performance of Al2O3/R-134a nano refrigerants. Int J Heat Mass Transf 57(1):100–108CrossRef Mahbubul IM et al (2013) Thermophysical properties and heat transfer performance of Al2O3/R-134a nano refrigerants. Int J Heat Mass Transf 57(1):100–108CrossRef
28.
go back to reference Mahbubul IM, Rahman S, Amalina MA (2012) Investigation of viscosity of R123-TiO2 nanorefrigerant. Int J Mech Mater Eng 7(2):146–151 Mahbubul IM, Rahman S, Amalina MA (2012) Investigation of viscosity of R123-TiO2 nanorefrigerant. Int J Mech Mater Eng 7(2):146–151
29.
go back to reference Mahbubul IM, Saidur R, Amalina MA (2013) Heat transfer and pressure drop characteristics of Al2O3-R141b nanorefrigerant in horizontal smooth circular tube. Procedia Eng 56:323–329CrossRef Mahbubul IM, Saidur R, Amalina MA (2013) Heat transfer and pressure drop characteristics of Al2O3-R141b nanorefrigerant in horizontal smooth circular tube. Procedia Eng 56:323–329CrossRef
30.
go back to reference Kedzierski MA (2011) Effect of Al2O3 nanolubricant on R134a pool boiling heat transfer. Int J Refrig 34(2):498–508CrossRef Kedzierski MA (2011) Effect of Al2O3 nanolubricant on R134a pool boiling heat transfer. Int J Refrig 34(2):498–508CrossRef
31.
go back to reference Karami M, Raisee M, Delfani S (2014) Numerical investigation of nanofluid-based solar collectors. In: IOP conference series: materials science and engineering, vol 64(1). IOP Publishing Karami M, Raisee M, Delfani S (2014) Numerical investigation of nanofluid-based solar collectors. In: IOP conference series: materials science and engineering, vol 64(1). IOP Publishing
32.
go back to reference Sandesh CS, Pise AT, Madane PA (2012) Performance of nanofluid-charged solar water heater by solar tracking system. In: IEEE-international conference on advances in engineering, science and management (ICAESM-2012). IEEE, pp 247–253 Sandesh CS, Pise AT, Madane PA (2012) Performance of nanofluid-charged solar water heater by solar tracking system. In: IEEE-international conference on advances in engineering, science and management (ICAESM-2012). IEEE, pp 247–253
Metadata
Title
Performance Study on Flat Plate Solar Water Heater with Copper Nanoparticles
Authors
R. Praveen Bharathwaj
M. B. Varun Pradeep
Joe Jones Raju
A. Satheesh
P. Padmanathan
Copyright Year
2021
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-15-7831-1_50

Premium Partners