Skip to main content
Top
Published in: International Journal of Computer Assisted Radiology and Surgery 9/2018

13-06-2018 | Original Article

Peripheral bronchial identification on chest CT using unsupervised machine learning

Authors: Daniel A. Moses, Laughlin Dawes, Claude Sammut, Tatjana Zrimec

Published in: International Journal of Computer Assisted Radiology and Surgery | Issue 9/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Purpose

To automatically identify small- to medium-diameter bronchial segments distributed throughout the lungs.

Methods

We segment the peripheral pulmonary vascular tree and construct cross-sectional images perpendicular to the lung vasculature. The bronchi running with pulmonary arteries appear as concentric rings, and potential center points that lie within the bronchi are identified by looking for circles (using the circular Hough transform) and rings (using a novel variable ring filter). The number of candidate bronchial center points are further reduced by using agglomerative hierarchical clustering applied to the points represented with 18 features pertaining to their 3D position, orientation and appearance of the surrounding cross-sectional image. Resulting clusters corresponded to bronchial segments. Parameters of the algorithm are varied and applied to two experimental data sets to find the best values for bronchial identification. The optimized algorithm was then applied to a further 21 CT studies obtained using two different CT vendors.

Results

The parameters that result in the most number of true positive bronchial center points with > 95% precision are a tolerance of 0.15 for the hierarchical clustering algorithm and a threshold of 75 HU with 10 spokes for the ring filter. Overall, the performance on all 21 test data sets from CT scans from both vendors demonstrates a mean number of 563 bronchial points detected per CT study, with a mean precision of 96%. The detected points across this group of test data sets are relatively uniformly distributed spatially with respect to spherical coordinates with the origin at the center of the test imaging data sets.

Conclusion

We have constructed a robust algorithm for automatic detection of small- to medium-diameter bronchial segments throughout the lungs using a combination of knowledge-based approaches and unsupervised machine learning. It appears robust over two different CT vendors with similar acquisition parameters.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Sharma V, Shaaban AM, Berges G, Gosselin M (2002) The radiological spectrum of small-airway diseases. Semin Ultrasound CT MR 23(4):339–351CrossRefPubMed Sharma V, Shaaban AM, Berges G, Gosselin M (2002) The radiological spectrum of small-airway diseases. Semin Ultrasound CT MR 23(4):339–351CrossRefPubMed
2.
go back to reference Hansell DM (2001) Small airways diseases: detection and insights with computed tomography. Eur Respir J 17(6):1294–1313CrossRefPubMed Hansell DM (2001) Small airways diseases: detection and insights with computed tomography. Eur Respir J 17(6):1294–1313CrossRefPubMed
3.
go back to reference Tasker AD, Flower CD (1999) Imaging the airways. Hemoptysis, bronchiectasis, and small airways disease. Clin Chest Med 20(4):761–773CrossRefPubMed Tasker AD, Flower CD (1999) Imaging the airways. Hemoptysis, bronchiectasis, and small airways disease. Clin Chest Med 20(4):761–773CrossRefPubMed
5.
go back to reference Webb NLMu WR, Naidich DP (2001) High-resolution CT of the lung, 3rd edn. Lippincott Williams & Wilkins, Philadelphia Webb NLMu WR, Naidich DP (2001) High-resolution CT of the lung, 3rd edn. Lippincott Williams & Wilkins, Philadelphia
8.
go back to reference Feuerstein M, Kitasaka T, Mori K (2009) Adaptive branch tracing and image sharpening for airway tree extraction in 3-D chest CT. In: Second international workshop of pulmonary imaging analysis EXACT09 Feuerstein M, Kitasaka T, Mori K (2009) Adaptive branch tracing and image sharpening for airway tree extraction in 3-D chest CT. In: Second international workshop of pulmonary imaging analysis EXACT09
9.
go back to reference Lo P, Ginneken Bv, Reinhardt JM, Bruijne Md (2009) Extraction of airways from CT. In: Second international workshop of pulmonary imaging analysis EXACT 09 Lo P, Ginneken Bv, Reinhardt JM, Bruijne Md (2009) Extraction of airways from CT. In: Second international workshop of pulmonary imaging analysis EXACT 09
11.
go back to reference Kitasaka T, Yano H, Feuerstein M, Mori K (2010) Bronchial region extraction from 3D chest CT image by voxel classification based on local intensity structure. In: Third international workshop on pulmonary image analysis, p 21 Kitasaka T, Yano H, Feuerstein M, Mori K (2010) Bronchial region extraction from 3D chest CT image by voxel classification based on local intensity structure. In: Third international workshop on pulmonary image analysis, p 21
12.
go back to reference Xu Z, Bagci U, Foster B, Mollura DJ (2013) A hybrid multi-scale approach to automatic airway tree segmentation from CT scans. In: 10th international symposium on biomedical imaging: from nano to macro, pp 1308–1311 Xu Z, Bagci U, Foster B, Mollura DJ (2013) A hybrid multi-scale approach to automatic airway tree segmentation from CT scans. In: 10th international symposium on biomedical imaging: from nano to macro, pp 1308–1311
17.
go back to reference Frangi AF, Niessen WJ, Vincken KL, Viergever MA (1998) Multiscale vessel enhancement filtering. In: Medical image computing and computer-assisted intervention—MICCAI’98. In: First international conference. Proceedings, 11–13 Oct. 1998, Berlin, Germany. Springer, pp 130-137 Frangi AF, Niessen WJ, Vincken KL, Viergever MA (1998) Multiscale vessel enhancement filtering. In: Medical image computing and computer-assisted intervention—MICCAI’98. In: First international conference. Proceedings, 11–13 Oct. 1998, Berlin, Germany. Springer, pp 130-137
18.
go back to reference Manniesing R, Niessen W (2005) Multiscale vessel enhancing diffusion in CT angiography noise filtering. In: Information processing in medical imaging. 19th International conference, IPMI 2005. Proceedings, 10–15 July 2005, Berlin, Germany, 2005. Information processing in medical imaging. 19th International conference, IPMI 2005. Proceedings (Lecture Notes in Computer Science vol 3565). Springer, pp 138–149 Manniesing R, Niessen W (2005) Multiscale vessel enhancing diffusion in CT angiography noise filtering. In: Information processing in medical imaging. 19th International conference, IPMI 2005. Proceedings, 10–15 July 2005, Berlin, Germany, 2005. Information processing in medical imaging. 19th International conference, IPMI 2005. Proceedings (Lecture Notes in Computer Science vol 3565). Springer, pp 138–149
19.
go back to reference Palagyi K, Kuba A (1998) A 3D 6-subiteration thinning algorithm for extracting medial lines. Pattern Recogn Lett 19:613–627CrossRef Palagyi K, Kuba A (1998) A 3D 6-subiteration thinning algorithm for extracting medial lines. Pattern Recogn Lett 19:613–627CrossRef
22.
go back to reference Hastie T, Tibshirani R, Friedman J (2003) The elements of statistical learning: data mining, inference, and prediction. The elements of statistical learning. Springer, Berlin Hastie T, Tibshirani R, Friedman J (2003) The elements of statistical learning: data mining, inference, and prediction. The elements of statistical learning. Springer, Berlin
23.
go back to reference Cristianini N, Shawe-Taylor J (2000) An introduction to support vector machines and other kernel-based learning methods. Cambridge University Press, CambridgeCrossRef Cristianini N, Shawe-Taylor J (2000) An introduction to support vector machines and other kernel-based learning methods. Cambridge University Press, CambridgeCrossRef
26.
go back to reference Levitzky MG (2013) Pulmonary physiology, 8th edn. McGraw-Hill Education, New York Levitzky MG (2013) Pulmonary physiology, 8th edn. McGraw-Hill Education, New York
Metadata
Title
Peripheral bronchial identification on chest CT using unsupervised machine learning
Authors
Daniel A. Moses
Laughlin Dawes
Claude Sammut
Tatjana Zrimec
Publication date
13-06-2018
Publisher
Springer International Publishing
Published in
International Journal of Computer Assisted Radiology and Surgery / Issue 9/2018
Print ISSN: 1861-6410
Electronic ISSN: 1861-6429
DOI
https://doi.org/10.1007/s11548-018-1805-8

Other articles of this Issue 9/2018

International Journal of Computer Assisted Radiology and Surgery 9/2018 Go to the issue

Premium Partner