Skip to main content
Top

2018 | OriginalPaper | Chapter

53. Phase Change Materials

Authors : Navin Kumar, Debjyoti Banerjee

Published in: Handbook of Thermal Science and Engineering

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Phase change materials (PCMs) primarily leverage latent heat during phase transformation processes to minimize material usage for thermal energy storage (TES) or thermal management applications (TMA). PCMs effectively serve as thermal capacitors that help to mitigate the imbalance between energy demand and supply, to address the inherently transient nature of applications that require TES or TMA. PCMs provide higher energy storage density, since latent heat values are significantly higher than sensible heat. PCMs can enable the realization of isothermal reservoirs which serve as a heat source or heat sink. Reliability of PCM for TES or TMA is typically tested by their ability to withstand multiple charging and discharging cycles. In numerous literature reports, PCMs were explored for TES or TMA – ranging from solar power harvesting to thermal management of buildings. The wide range of information on PCMs are culled from the literature reports and summarized in this study. The culled information is categorized into history of PCMs, types (organic/inorganic), analytical formulations (for charging/discharging cycles), protocols for thermophysical property measurements (microscale/macroscale), reliability issues, applications, and identification of future research directions.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Abduljalil A, Sohif M, Sopian K, Sulaiman MY, Mohammad TA (2014) Experimental study of melting and solidification of PCM in a triplex tube heat exchanger with fins. Energy Build 68:33–41CrossRef Abduljalil A, Sohif M, Sopian K, Sulaiman MY, Mohammad TA (2014) Experimental study of melting and solidification of PCM in a triplex tube heat exchanger with fins. Energy Build 68:33–41CrossRef
go back to reference Abhat A (1983) Low temperature latent heat temperature energy storage: heat storage materials. Sol Energy 30(4):313–332CrossRef Abhat A (1983) Low temperature latent heat temperature energy storage: heat storage materials. Sol Energy 30(4):313–332CrossRef
go back to reference Agyenim F, Hewitt N, Eames P, Smyth M (2010) A review of material, heat transfer and phase change problem formulation for latent heat thermal energy storage systems (LHTESS). Renew Sustain Energy Rev 14:615–628CrossRef Agyenim F, Hewitt N, Eames P, Smyth M (2010) A review of material, heat transfer and phase change problem formulation for latent heat thermal energy storage systems (LHTESS). Renew Sustain Energy Rev 14:615–628CrossRef
go back to reference Akhilesh R, Narasimhan A, Balaji C (2005) Method to improve geometry for heat transfer enhancement in PCM composite heat sinks. Int J Heat Mass Trans 48(13):2759–2770MATHCrossRef Akhilesh R, Narasimhan A, Balaji C (2005) Method to improve geometry for heat transfer enhancement in PCM composite heat sinks. Int J Heat Mass Trans 48(13):2759–2770MATHCrossRef
go back to reference Alkan C, Sari A, Karaipekli A, Uzun O (2009) Preparation, characterization, and thermal properties of microencapsulated phase change material for thermal energy storage. Sol Energy Mater Sol Cells 93(1):143–147CrossRef Alkan C, Sari A, Karaipekli A, Uzun O (2009) Preparation, characterization, and thermal properties of microencapsulated phase change material for thermal energy storage. Sol Energy Mater Sol Cells 93(1):143–147CrossRef
go back to reference Amon C, Vesligaj M (1999) Transient thermal management of temperature fluctuations during time varying workloads on portable electronics. IEEE Trans Component Packag Technol 22:541–550CrossRef Amon C, Vesligaj M (1999) Transient thermal management of temperature fluctuations during time varying workloads on portable electronics. IEEE Trans Component Packag Technol 22:541–550CrossRef
go back to reference Araki N, Futamura M, Makino A, Shibata H (1995) Measurement of thermophysical properties of sodium acetate hydrate. Int J Thermophys 16(6):1455–1466CrossRef Araki N, Futamura M, Makino A, Shibata H (1995) Measurement of thermophysical properties of sodium acetate hydrate. Int J Thermophys 16(6):1455–1466CrossRef
go back to reference Bareiss M, Beer H (1984) An analytical solution of the heat transfer process during melting of an unfixed solid phase change material inside a horizontal tube. Int J Heat Mass Trans 27(5):739–746CrossRef Bareiss M, Beer H (1984) An analytical solution of the heat transfer process during melting of an unfixed solid phase change material inside a horizontal tube. Int J Heat Mass Trans 27(5):739–746CrossRef
go back to reference Barz T, Zauner C, Lager D, Cardenas D, Hengstberger F, Bournazou NC, Marx K (2016) Experimental analysis and numerical modeling of a shell and tube heat storage unit with phase change materials. Ind Eng Chem Res 55:8154–8164CrossRef Barz T, Zauner C, Lager D, Cardenas D, Hengstberger F, Bournazou NC, Marx K (2016) Experimental analysis and numerical modeling of a shell and tube heat storage unit with phase change materials. Ind Eng Chem Res 55:8154–8164CrossRef
go back to reference Beckermann C, Viskanta R (1988) Natural convection solid/liquid phase change in porous media. Int J Heat Mass Trans 31:35–46CrossRef Beckermann C, Viskanta R (1988) Natural convection solid/liquid phase change in porous media. Int J Heat Mass Trans 31:35–46CrossRef
go back to reference Biswas DR (1977) Thermal energy storage using sodium sulfate decahydrate and water. Sol Energy 19:99–100CrossRef Biswas DR (1977) Thermal energy storage using sodium sulfate decahydrate and water. Sol Energy 19:99–100CrossRef
go back to reference Brousseau P, Lacroix M (1998) Numerical simulation of a multi-layer latent heat thermal energy storage system. Int J Energy Res 22:1–15CrossRef Brousseau P, Lacroix M (1998) Numerical simulation of a multi-layer latent heat thermal energy storage system. Int J Energy Res 22:1–15CrossRef
go back to reference Cabeza LF, Svensson G, Hiebler S, Hiebler S, Mehling H (2003) Thermal performance of sodium acetate trihydrate thickened with different materials as phase change storage material. Appl Therm Eng 23(13):1697–1704CrossRef Cabeza LF, Svensson G, Hiebler S, Hiebler S, Mehling H (2003) Thermal performance of sodium acetate trihydrate thickened with different materials as phase change storage material. Appl Therm Eng 23(13):1697–1704CrossRef
go back to reference Chintakrinda K, Weinstein R, Fleischer AS (2011) A direct comparison of three different material enhancement methods on the transient thermal response of paraffin phase change material exposed to high heat fluxes. Int J Therm Sci 50:1639–1647CrossRef Chintakrinda K, Weinstein R, Fleischer AS (2011) A direct comparison of three different material enhancement methods on the transient thermal response of paraffin phase change material exposed to high heat fluxes. Int J Therm Sci 50:1639–1647CrossRef
go back to reference Costa M, Oliva A, Ferez-Searra CD, Alba R (1991) Numerical simulation of solid-liquid phase change phenomena. Comput Methods Appl Mech Eng 91:1123–1134CrossRef Costa M, Oliva A, Ferez-Searra CD, Alba R (1991) Numerical simulation of solid-liquid phase change phenomena. Comput Methods Appl Mech Eng 91:1123–1134CrossRef
go back to reference Delaunay D, Carre P (1982) Dispositif de mesure automatique de la conductivité thermique des matériaux à changement de phase. Rev Phys Appl 17:209–215CrossRef Delaunay D, Carre P (1982) Dispositif de mesure automatique de la conductivité thermique des matériaux à changement de phase. Rev Phys Appl 17:209–215CrossRef
go back to reference Delgado M, Lazaro A, Mazo J, Zalba B (2012) Review on phase change material emulsions and microencapsulated phase change material slurries: materials, heat transfer studies and applications. Renew Sust Energ Rev 16(1):253–273CrossRef Delgado M, Lazaro A, Mazo J, Zalba B (2012) Review on phase change material emulsions and microencapsulated phase change material slurries: materials, heat transfer studies and applications. Renew Sust Energ Rev 16(1):253–273CrossRef
go back to reference Deng Y (2016) Thermal conductivity enhancement of polyethylene glycol/expanded vermiculite shape-stabilized composite phase change material with silver nanowire for thermal energy storage. Chem Eng J 295:427–435CrossRef Deng Y (2016) Thermal conductivity enhancement of polyethylene glycol/expanded vermiculite shape-stabilized composite phase change material with silver nanowire for thermal energy storage. Chem Eng J 295:427–435CrossRef
go back to reference Desgrosseilliers L, Groulx D, White MA (2013) Heat conduction in laminate multilayer bodies with applied finite heat source. Int J Thermal Sci 72:47–59CrossRef Desgrosseilliers L, Groulx D, White MA (2013) Heat conduction in laminate multilayer bodies with applied finite heat source. Int J Thermal Sci 72:47–59CrossRef
go back to reference Duan X, Naterer G (2010) Heat transfer in phase change materials for thermal management of electric vehicle battery modules. Int J Heat Mass Trans 53:5176–5182CrossRef Duan X, Naterer G (2010) Heat transfer in phase change materials for thermal management of electric vehicle battery modules. Int J Heat Mass Trans 53:5176–5182CrossRef
go back to reference Elgafy A, Lafdi K (2005) Effect of carbon nanofiber additives on thermal behaviour of phase change materials. Carbon 43:3067–3074CrossRef Elgafy A, Lafdi K (2005) Effect of carbon nanofiber additives on thermal behaviour of phase change materials. Carbon 43:3067–3074CrossRef
go back to reference Esen M, Ayhan T (1996) Development of a model compatible with solar assisted cylindrical energy storage tank and variation of stored energy with time for different phase change materials. Energy Convers Manag 37(12):1775–1785CrossRef Esen M, Ayhan T (1996) Development of a model compatible with solar assisted cylindrical energy storage tank and variation of stored energy with time for different phase change materials. Energy Convers Manag 37(12):1775–1785CrossRef
go back to reference Fan LW, Fang X, Wang X, Zeng Y, Xiao YQ, Yu ZT, Xu X, Hu YC, Cen KF (2013) Effects of various carbon nanofillers on the thermal conductivity and energy storage properties of paraffin-based nanocomposite phase change materials. Appl Energy 110:163–172CrossRef Fan LW, Fang X, Wang X, Zeng Y, Xiao YQ, Yu ZT, Xu X, Hu YC, Cen KF (2013) Effects of various carbon nanofillers on the thermal conductivity and energy storage properties of paraffin-based nanocomposite phase change materials. Appl Energy 110:163–172CrossRef
go back to reference Fedden A (2006) Graphitized carbon foam with phase change material. Air Force Insitute of Technology, Dayton Fedden A (2006) Graphitized carbon foam with phase change material. Air Force Insitute of Technology, Dayton
go back to reference Fleischer AS (2015) Thermal energy storage using phase change materials fundamentals and applications, SpringerBriefs in thermal engineering and applied science. Springer, New YorkCrossRef Fleischer AS (2015) Thermal energy storage using phase change materials fundamentals and applications, SpringerBriefs in thermal engineering and applied science. Springer, New YorkCrossRef
go back to reference Fok S, Shen W, Tan F (2010) Cooling of portable hand-held electronic devices using phase change materials in finned heat sinks. Int J Thermal Sci 49(1):109–117CrossRef Fok S, Shen W, Tan F (2010) Cooling of portable hand-held electronic devices using phase change materials in finned heat sinks. Int J Thermal Sci 49(1):109–117CrossRef
go back to reference Gong Z, Mujumdar A (1997) Finite-element analysis of cyclic heat transfer in a shell and tube latent heat energy storage exchanger. Appl Thermal Energy 17(6):583–591CrossRef Gong Z, Mujumdar A (1997) Finite-element analysis of cyclic heat transfer in a shell and tube latent heat energy storage exchanger. Appl Thermal Energy 17(6):583–591CrossRef
go back to reference Hasan A (1994) Phase change material energy storage system employing palmitic acid. Sol Energy 52:143–154CrossRef Hasan A (1994) Phase change material energy storage system employing palmitic acid. Sol Energy 52:143–154CrossRef
go back to reference He Y (2005) Rapid thermal conductivity measurement with a hot-disk sensor: part 1. Theoretical considerations. Thermochim Acta 436:122–129CrossRef He Y (2005) Rapid thermal conductivity measurement with a hot-disk sensor: part 1. Theoretical considerations. Thermochim Acta 436:122–129CrossRef
go back to reference Hosseini MJ, Rahimil M, Bahrampoury R (2015) Thermal analysis of PCM containing heat exchanger. Mech Sci 6:221–234CrossRef Hosseini MJ, Rahimil M, Bahrampoury R (2015) Thermal analysis of PCM containing heat exchanger. Mech Sci 6:221–234CrossRef
go back to reference Huang J, Wang T, Wang CH, Rao ZH (2013) Molecular dynamics simulations of melting behaviour of n-hexacosane as phase change material for thermal energy storage. Asian J Chem 25(4):1839–1841 Huang J, Wang T, Wang CH, Rao ZH (2013) Molecular dynamics simulations of melting behaviour of n-hexacosane as phase change material for thermal energy storage. Asian J Chem 25(4):1839–1841
go back to reference Humphries W (1978) Performance of finned thermal capacitors. NASA Tech Note, NASA-TN-D-7690 Humphries W (1978) Performance of finned thermal capacitors. NASA Tech Note, NASA-TN-D-7690
go back to reference Humphries W, Griggs E (1977) A design handbook for phase change thermal control and energy storage devices. NASA Technical Ppr, NASA-TP-1074 Humphries W, Griggs E (1977) A design handbook for phase change thermal control and energy storage devices. NASA Technical Ppr, NASA-TP-1074
go back to reference Inaba H, Tu P (1997) Evaluation of thermophysical characteristics on shape-stabilized paraffin as a solid-liquid phase change material. Heat Mass Transf 32:307–312CrossRef Inaba H, Tu P (1997) Evaluation of thermophysical characteristics on shape-stabilized paraffin as a solid-liquid phase change material. Heat Mass Transf 32:307–312CrossRef
go back to reference Ismail K, Henriquez J (2000) Solidification of PCM inside a spherical capsule. Energy Convers Manag 41:179–187 Ismail K, Henriquez J (2000) Solidification of PCM inside a spherical capsule. Energy Convers Manag 41:179–187
go back to reference Jameskhorshid A, Sadrameli S, Farid M (2014) A review of microencapsulation methods of phase change materials (PCMs) as a thermal energy storage (TES) medium. Renew Sustain Energy Rev 31:531–542CrossRef Jameskhorshid A, Sadrameli S, Farid M (2014) A review of microencapsulation methods of phase change materials (PCMs) as a thermal energy storage (TES) medium. Renew Sustain Energy Rev 31:531–542CrossRef
go back to reference Johansson P, Kalagasidis AS, Jansson H (2015) Investigating PCM activation using transient plane source method. Energy Procedia 78:800–805CrossRef Johansson P, Kalagasidis AS, Jansson H (2015) Investigating PCM activation using transient plane source method. Energy Procedia 78:800–805CrossRef
go back to reference Joshi Y, Pal D (1997) Application of phase change materials to thermal control of electronics modules: a computational study. Trans ASME J Elect Packag 119:40–50CrossRef Joshi Y, Pal D (1997) Application of phase change materials to thermal control of electronics modules: a computational study. Trans ASME J Elect Packag 119:40–50CrossRef
go back to reference Kandasamy R, Wang XQ, Mujumdar A (2008) Transient cooling of electronics using phase change material (PCM)-based heat sinks. Appl Thermal Eng 28:1047–1057CrossRef Kandasamy R, Wang XQ, Mujumdar A (2008) Transient cooling of electronics using phase change material (PCM)-based heat sinks. Appl Thermal Eng 28:1047–1057CrossRef
go back to reference Kaul RK (2002) Thermal insulating coating for spacecrafts. US Patent 6939610 B1 Kaul RK (2002) Thermal insulating coating for spacecrafts. US Patent 6939610 B1
go back to reference Kerkamm I (2014) Battery thermal management using phase change material. US Patent 20140004394 A1 Kerkamm I (2014) Battery thermal management using phase change material. US Patent 20140004394 A1
go back to reference Khan Z, Khan Z, Ghafoor A (2016) A review of performance enhancement of PCM based latent heat storage system within the context of materials, thermal stability and compatibility. Energy Convers Manag 115:132–158CrossRef Khan Z, Khan Z, Ghafoor A (2016) A review of performance enhancement of PCM based latent heat storage system within the context of materials, thermal stability and compatibility. Energy Convers Manag 115:132–158CrossRef
go back to reference Khobadadi J, Zhang Y (1999) Effects of buoyancy driven convection on melting within spherical containers. Int J Heat Mass Trans 44:4197–4205 Khobadadi J, Zhang Y (1999) Effects of buoyancy driven convection on melting within spherical containers. Int J Heat Mass Trans 44:4197–4205
go back to reference Khudhair AM, Farid MM (2004) A review on energy conversion in building applications with thermal storage by latent heat using phase change materials. Energy Convers Manag 45(2):263–275CrossRef Khudhair AM, Farid MM (2004) A review on energy conversion in building applications with thermal storage by latent heat using phase change materials. Energy Convers Manag 45(2):263–275CrossRef
go back to reference Kravvaritis ED, Antonopoulos KA, Tzivanidis C (2010) Improvements to the measurement of the thermal properties of phase change materials. Meas Sci Technol 21:91–99CrossRef Kravvaritis ED, Antonopoulos KA, Tzivanidis C (2010) Improvements to the measurement of the thermal properties of phase change materials. Meas Sci Technol 21:91–99CrossRef
go back to reference Kurkulu A, Wheldon A, Hadley P (1996) Mathematical modelling of the thermal performance of a phase change material storage: cooling cycle. Appl Thermal Energy 16(7):615–623 Kurkulu A, Wheldon A, Hadley P (1996) Mathematical modelling of the thermal performance of a phase change material storage: cooling cycle. Appl Thermal Energy 16(7):615–623
go back to reference Kuznik F, David D, Roux JJ (2011) A review on phase change materials integrated in building walls. Renew Sust Energ Rev 5(1):379–391CrossRef Kuznik F, David D, Roux JJ (2011) A review on phase change materials integrated in building walls. Renew Sust Energ Rev 5(1):379–391CrossRef
go back to reference Kwon H, Kim J (2015) Preparation of n-octadecane nanocapsules by using interfacial redox initiation in miniemulsion polymerization. Macromol Res 18:923–926CrossRef Kwon H, Kim J (2015) Preparation of n-octadecane nanocapsules by using interfacial redox initiation in miniemulsion polymerization. Macromol Res 18:923–926CrossRef
go back to reference Lane GA (1983) Background and scientific principles, solar heat storage: latent heat material, vol I. CRC Press, Boca Raton Lane GA (1983) Background and scientific principles, solar heat storage: latent heat material, vol I. CRC Press, Boca Raton
go back to reference Lane GA (1992) Phase change materials for energy storage nucleation to prevent supercooling. Sol Energy Mater Sol Cells 27(2):135–180CrossRef Lane GA (1992) Phase change materials for energy storage nucleation to prevent supercooling. Sol Energy Mater Sol Cells 27(2):135–180CrossRef
go back to reference Latibari S, Mehrali M, Mahlia T (2013) Synthesis, characterization and thermal properties of nanoencapsulated phase change materials via sol-gel method. Sol Energy 61:664–672 Latibari S, Mehrali M, Mahlia T (2013) Synthesis, characterization and thermal properties of nanoencapsulated phase change materials via sol-gel method. Sol Energy 61:664–672
go back to reference Lazaro A, Gunther E, Mehling H, Hiebler S, Marin MJ, Zalba B (2006) Verification of a T-history installation to measure enthalpy versus temperature curves of phase change materials. Meas Sci Technol 17:2168–2174CrossRef Lazaro A, Gunther E, Mehling H, Hiebler S, Marin MJ, Zalba B (2006) Verification of a T-history installation to measure enthalpy versus temperature curves of phase change materials. Meas Sci Technol 17:2168–2174CrossRef
go back to reference Li J, Zeng Y, Luo Z (2014) Simultaneous enhancement of latent heat and thermal conductivity of docoasane based phase change materials in the presence of spongy graphene. Sol Energy Mater Sol Cells 66:48–51CrossRef Li J, Zeng Y, Luo Z (2014) Simultaneous enhancement of latent heat and thermal conductivity of docoasane based phase change materials in the presence of spongy graphene. Sol Energy Mater Sol Cells 66:48–51CrossRef
go back to reference Long J (2008) Numerical and experimental investigation for heat transfer in triplex concentric tube with phase change material for thermal energy storage. Sol Energy 82:977–985CrossRef Long J (2008) Numerical and experimental investigation for heat transfer in triplex concentric tube with phase change material for thermal energy storage. Sol Energy 82:977–985CrossRef
go back to reference Marin J, Zalba B, Cabeza LF, Mehling H (2003) Determination of enthalpy-temperature curves of phase change materials with temperature-history method: improvement to temperature dependent properties. Meas Sci Technol 14:184–189CrossRef Marin J, Zalba B, Cabeza LF, Mehling H (2003) Determination of enthalpy-temperature curves of phase change materials with temperature-history method: improvement to temperature dependent properties. Meas Sci Technol 14:184–189CrossRef
go back to reference Marks SB (1982) The effects of crystal size on the thermal energy storage capacity of thickened Glauber’s salt. Sol Energy 30(1):45–49CrossRef Marks SB (1982) The effects of crystal size on the thermal energy storage capacity of thickened Glauber’s salt. Sol Energy 30(1):45–49CrossRef
go back to reference Mehling H, Cabeza LF (2008) Heat and cold storage with PCM. Springer, Berlin Mehling H, Cabeza LF (2008) Heat and cold storage with PCM. Springer, Berlin
go back to reference Mehling H, Heibler S, Ziegler F (2000) Latent heat storage using a PCM-graphite composite material. In: Proceedings of Terrastock conference, Stuttgart Mehling H, Heibler S, Ziegler F (2000) Latent heat storage using a PCM-graphite composite material. In: Proceedings of Terrastock conference, Stuttgart
go back to reference Modal S (2008) Phase change materials for smart textiles – an overview. Appl Thermal Eng 28:1536–1550CrossRef Modal S (2008) Phase change materials for smart textiles – an overview. Appl Thermal Eng 28:1536–1550CrossRef
go back to reference Nabil M, Khodadadi J (2013) Experimental determination of temperature-dependent thermal conductivity of solid eicosane-based nanostructure-enhanced phase change materials. Int J Heat Mass Trans 67:301–310CrossRef Nabil M, Khodadadi J (2013) Experimental determination of temperature-dependent thermal conductivity of solid eicosane-based nanostructure-enhanced phase change materials. Int J Heat Mass Trans 67:301–310CrossRef
go back to reference Naumann R, Emons HH (1989) Results of thermal analysis for investigation of salt hydrates as latent heat-storage materials. Thermal Anal 35:1009–1031CrossRef Naumann R, Emons HH (1989) Results of thermal analysis for investigation of salt hydrates as latent heat-storage materials. Thermal Anal 35:1009–1031CrossRef
go back to reference Nie C, Tong X, Wu S, Gong S, Peng D (2015) Paraffin confined in carbon nanotubes as nano-encapsulated phase change materials: experimental and molecular dynamics studies. Roy Soc Chem 5:92812–92817 Nie C, Tong X, Wu S, Gong S, Peng D (2015) Paraffin confined in carbon nanotubes as nano-encapsulated phase change materials: experimental and molecular dynamics studies. Roy Soc Chem 5:92812–92817
go back to reference Nithyanandam K, Pitchumani R (2014) Cost and performance analysis of concentrating solar power systems with integrated latent thermal energy storage. Energy 64:793–810CrossRef Nithyanandam K, Pitchumani R (2014) Cost and performance analysis of concentrating solar power systems with integrated latent thermal energy storage. Energy 64:793–810CrossRef
go back to reference Ovshinsky SR (1996) Memory element with memory material comprising phase-change material and dielectric material. US Patent 6087674 A Ovshinsky SR (1996) Memory element with memory material comprising phase-change material and dielectric material. US Patent 6087674 A
go back to reference Papadimitratos A, Hassanipour F, Pozdin V (2016) Evacuated tube solar collectors integrated with phase change materials. Sol Energy 84:10–19CrossRef Papadimitratos A, Hassanipour F, Pozdin V (2016) Evacuated tube solar collectors integrated with phase change materials. Sol Energy 84:10–19CrossRef
go back to reference Park G, Lee J, Kang S, Kim M, Kang S, Choi W (2016) Design principle of super resolution near-field structure using thermally responsive optical phase change materials for nanolithography application. Mat Des 102:45–55 Park G, Lee J, Kang S, Kim M, Kang S, Choi W (2016) Design principle of super resolution near-field structure using thermally responsive optical phase change materials for nanolithography application. Mat Des 102:45–55
go back to reference Pendyala S (2012) Macroencapsulation of phase change materials for thermal energy storage. University of South Florida, Tampa Pendyala S (2012) Macroencapsulation of phase change materials for thermal energy storage. University of South Florida, Tampa
go back to reference RAL (2009) Phase change material [quality assurance]. RAL Deutsches Institut, Berlin RAL (2009) Phase change material [quality assurance]. RAL Deutsches Institut, Berlin
go back to reference Rao Z, Wang S, Wu M, Zhang Y, Li F (2012) Molecular dynamics simulations of melting behaviour of alkane as phase change slurry. Energy Convers Manag 64:152–156CrossRef Rao Z, Wang S, Wu M, Zhang Y, Li F (2012) Molecular dynamics simulations of melting behaviour of alkane as phase change slurry. Energy Convers Manag 64:152–156CrossRef
go back to reference Rao Z, Wang S, Peng F (2013) Molecular dynamics simulations of nano-encapsulated and nanoparticle-enhanced thermal energy storage phase change materials. Int J Heat Mass Trans 66:575–584CrossRef Rao Z, Wang S, Peng F (2013) Molecular dynamics simulations of nano-encapsulated and nanoparticle-enhanced thermal energy storage phase change materials. Int J Heat Mass Trans 66:575–584CrossRef
go back to reference Riley D, Smith F, Poots G (1974) The inward melting of spheres and circular cylinders. Int J Heat Mass Trans 17:1507–1516CrossRef Riley D, Smith F, Poots G (1974) The inward melting of spheres and circular cylinders. Int J Heat Mass Trans 17:1507–1516CrossRef
go back to reference Robak C, Bergman T, Faghri A (2011) Economic evaluation of latent heat thermal energy storage using embedded thermosyphons for concentrating solar power applications. Sol Energy 85:2461–2473CrossRef Robak C, Bergman T, Faghri A (2011) Economic evaluation of latent heat thermal energy storage using embedded thermosyphons for concentrating solar power applications. Sol Energy 85:2461–2473CrossRef
go back to reference Romero AG, Diarce G, Ibarretxe J (2012) Influence of the experimental conditions on the subcooling of Glauber’s salt when used as PCM. Sol Energy Mater Sol Cells 102:189–195CrossRef Romero AG, Diarce G, Ibarretxe J (2012) Influence of the experimental conditions on the subcooling of Glauber’s salt when used as PCM. Sol Energy Mater Sol Cells 102:189–195CrossRef
go back to reference Rosen M, Dincer I (2002) Thermal energy storage, systems, and application. Wiley, Chichester Rosen M, Dincer I (2002) Thermal energy storage, systems, and application. Wiley, Chichester
go back to reference Ryu H, Woo W, Shin BC, Kim DS (1992) Prevention of supercooling and stabilization of inorganic salt hydrates as latent heat storage materials. Sol Energy Mater Sol Cells 27:161–172CrossRef Ryu H, Woo W, Shin BC, Kim DS (1992) Prevention of supercooling and stabilization of inorganic salt hydrates as latent heat storage materials. Sol Energy Mater Sol Cells 27:161–172CrossRef
go back to reference Sabbah R, Kizilel R, Selman J, Hallaj A (2008) Active (air-cooled) vs. passive (phase change material) thermal management of high power lithium-ion packs: limitation of temperature rise and uniformity of temperature distribution. J Power Sources 182(2):630–638CrossRef Sabbah R, Kizilel R, Selman J, Hallaj A (2008) Active (air-cooled) vs. passive (phase change material) thermal management of high power lithium-ion packs: limitation of temperature rise and uniformity of temperature distribution. J Power Sources 182(2):630–638CrossRef
go back to reference Sanusi O, Warzoha R, Fieischer AS (2011) Energy storage and solidification of paraffin phase change material embedded with graphite nanofibers. Int J Heat Mass Trans 54:4429–4436CrossRef Sanusi O, Warzoha R, Fieischer AS (2011) Energy storage and solidification of paraffin phase change material embedded with graphite nanofibers. Int J Heat Mass Trans 54:4429–4436CrossRef
go back to reference Sari A, Alkan C, Karaipekli A, Uzun O (2009) Microencapsulated n-octadecane as phase change material for thermal energy storage. Trans ASME J Sol Eng 83:1757–1763 Sari A, Alkan C, Karaipekli A, Uzun O (2009) Microencapsulated n-octadecane as phase change material for thermal energy storage. Trans ASME J Sol Eng 83:1757–1763
go back to reference Sarier N, Onder E (2012) Organic phase change material and their textile applications: an overview. Thermochem Acta 540:7–60CrossRef Sarier N, Onder E (2012) Organic phase change material and their textile applications: an overview. Thermochem Acta 540:7–60CrossRef
go back to reference Shamberger PJ, O’Malley MJ (2015) Heterogeneous nucleation of thermal storage material LiNO3.3H2O from stable lattice-matched nucleation catalysts. Acta Mater 84:265–274CrossRef Shamberger PJ, O’Malley MJ (2015) Heterogeneous nucleation of thermal storage material LiNO3.3H2O from stable lattice-matched nucleation catalysts. Acta Mater 84:265–274CrossRef
go back to reference Shamberger PJ, Reid T (2012) Thermophysical properties of lithium nitrate trihydrate from 253 to 353 K. J Chem Eng Data 57:1404–1411CrossRef Shamberger PJ, Reid T (2012) Thermophysical properties of lithium nitrate trihydrate from 253 to 353 K. J Chem Eng Data 57:1404–1411CrossRef
go back to reference Shamsundar N, Sparrow E (1976) Analysis of multidimensional conduction phase change via the enthalpy model. Trans ASME J Heat Trans 97:333–340CrossRef Shamsundar N, Sparrow E (1976) Analysis of multidimensional conduction phase change via the enthalpy model. Trans ASME J Heat Trans 97:333–340CrossRef
go back to reference Sharma A, Tyagi VV, Chen CR, Buddhi D (2009) Review on thermal energy storage with phase change materials and applications. Renew Sust Energ Rev 13:318–345CrossRef Sharma A, Tyagi VV, Chen CR, Buddhi D (2009) Review on thermal energy storage with phase change materials and applications. Renew Sust Energ Rev 13:318–345CrossRef
go back to reference Shatikian V, Ziskind G, Letan R (2008) Numerical investigation of a PCM-based heat sink with internal fins: constant heat flux. Int J Heat Mass Trans 51:1488–1493MATHCrossRef Shatikian V, Ziskind G, Letan R (2008) Numerical investigation of a PCM-based heat sink with internal fins: constant heat flux. Int J Heat Mass Trans 51:1488–1493MATHCrossRef
go back to reference Shin BC, Kim SD, Park WH (1989) Phase separation and supercooling of a latent heat-storage material. Energy 14:921–930CrossRef Shin BC, Kim SD, Park WH (1989) Phase separation and supercooling of a latent heat-storage material. Energy 14:921–930CrossRef
go back to reference Shi X, Memon AS, Tang W, Cui H, Xing F (2014) Experimental assessment of position of macro encapsulated phase change material in concrete walls on indoor temperatures and humidity levels. Energy and Buildings 71:80–87CrossRef Shi X, Memon AS, Tang W, Cui H, Xing F (2014) Experimental assessment of position of macro encapsulated phase change material in concrete walls on indoor temperatures and humidity levels. Energy and Buildings 71:80–87CrossRef
go back to reference Singh N, Banerjee D (2013) Nanofins: science and applications, SpringerBriefs in thermal engineering and applied science. Springer, New YorkMATH Singh N, Banerjee D (2013) Nanofins: science and applications, SpringerBriefs in thermal engineering and applied science. Springer, New YorkMATH
go back to reference Sliva P, Goncalves L, Pires L (2002) Transient behaviour of a latent heat thermal energy store: numerical and experimental studies. Appl Energy 73:83–98CrossRef Sliva P, Goncalves L, Pires L (2002) Transient behaviour of a latent heat thermal energy store: numerical and experimental studies. Appl Energy 73:83–98CrossRef
go back to reference Solomon A (1980) On the melting time of a simple body with a convection boundary condition. Lett Heat Mass Trans 7:183–188CrossRef Solomon A (1980) On the melting time of a simple body with a convection boundary condition. Lett Heat Mass Trans 7:183–188CrossRef
go back to reference Solomon AV (1993) Mathematical modelling of melting and freezing processes. Hemisphere, New York Solomon AV (1993) Mathematical modelling of melting and freezing processes. Hemisphere, New York
go back to reference Speyer RF (1994) Thermal analysis of materials. Marcel Dekker, New York Speyer RF (1994) Thermal analysis of materials. Marcel Dekker, New York
go back to reference Swaminathan C, Voller V (1993) On the enthalpy method. Intl J Num Method Heat Fluid Flow 3:233–244CrossRef Swaminathan C, Voller V (1993) On the enthalpy method. Intl J Num Method Heat Fluid Flow 3:233–244CrossRef
go back to reference Swanson T, Birus G (2002) NASA thermal control technologies for robotic spacecraft. Appl Thermal Eng 23(9):1055–1065CrossRef Swanson T, Birus G (2002) NASA thermal control technologies for robotic spacecraft. Appl Thermal Eng 23(9):1055–1065CrossRef
go back to reference Tay N, Belusko M, Bruno F (2012) An effectiveness-NTU technique for characterising tube-in-tank phase change thermal energy storage systems. Appl Energy 91:309–319CrossRef Tay N, Belusko M, Bruno F (2012) An effectiveness-NTU technique for characterising tube-in-tank phase change thermal energy storage systems. Appl Energy 91:309–319CrossRef
go back to reference Telkes M (1952) Nucleation of supersaturated inorganic salt solutions. J Ind Eng Chem 44:1308–1310CrossRef Telkes M (1952) Nucleation of supersaturated inorganic salt solutions. J Ind Eng Chem 44:1308–1310CrossRef
go back to reference Theunissen P, Buchlin J (1983) Numerical optimization of a solar air heating system based on encapsulated PCM storage. Sol Energy 31:271–277CrossRef Theunissen P, Buchlin J (1983) Numerical optimization of a solar air heating system based on encapsulated PCM storage. Sol Energy 31:271–277CrossRef
go back to reference Trammell MP (2013) Evaluation of the transient thermal performance of a graphite foam/phase change material composite. University of Tennessee, Knoxville Trammell MP (2013) Evaluation of the transient thermal performance of a graphite foam/phase change material composite. University of Tennessee, Knoxville
go back to reference Tseng Y, Fang M, Tsai P, Yang YM (2005) Preparation of microencapsulated phase-change materials (MCPCMs) by means of interfacial polycondensation. J Microencapsul 22(1):37–46CrossRef Tseng Y, Fang M, Tsai P, Yang YM (2005) Preparation of microencapsulated phase-change materials (MCPCMs) by means of interfacial polycondensation. J Microencapsul 22(1):37–46CrossRef
go back to reference Tyagi V, Kaushik S, Akiyama T (2011) Development of phase change materials based microencapsulated technology for buildings: a review. Renew Sust Energ Rev 15:1373–1391CrossRef Tyagi V, Kaushik S, Akiyama T (2011) Development of phase change materials based microencapsulated technology for buildings: a review. Renew Sust Energ Rev 15:1373–1391CrossRef
go back to reference Veerappan M, KalaiselvamS IS, Goic R (2009) Phase change characteristics study of spherical PCMs in solar energy storage. Sol Energy 83:1245–1252CrossRef Veerappan M, KalaiselvamS IS, Goic R (2009) Phase change characteristics study of spherical PCMs in solar energy storage. Sol Energy 83:1245–1252CrossRef
go back to reference Vettiger P, Despont M, Drechsler U (2000) The “millipede”-more than thousand tips for future AFM storage. IBM J Res Dev 44(3):323–340CrossRef Vettiger P, Despont M, Drechsler U (2000) The “millipede”-more than thousand tips for future AFM storage. IBM J Res Dev 44(3):323–340CrossRef
go back to reference Wang JP, Zhao XP, Guo HL, Zheng Q (2004) Preparation of microcapsules containing two phase core materials. Langmuir 128:10845–10850CrossRef Wang JP, Zhao XP, Guo HL, Zheng Q (2004) Preparation of microcapsules containing two phase core materials. Langmuir 128:10845–10850CrossRef
go back to reference Wang J, Xie H, Xin Z (2009) Thermal properties of paraffin based composites containing multi-walled carbon nanotubes. Thermochim Acta 488:39–42CrossRef Wang J, Xie H, Xin Z (2009) Thermal properties of paraffin based composites containing multi-walled carbon nanotubes. Thermochim Acta 488:39–42CrossRef
go back to reference Wang X, Zhang L, Yu Y-H (2015) Nano-encapsulated PCM via pickering emulsification. Sci Rep 5:1–8 Wang X, Zhang L, Yu Y-H (2015) Nano-encapsulated PCM via pickering emulsification. Sci Rep 5:1–8
go back to reference Wang Y, Chen Z, Ling X (2016) A molecular dynamics study of nano-encapsulated phase change material slurry. Appl Thermal Eng 98:835–840CrossRef Wang Y, Chen Z, Ling X (2016) A molecular dynamics study of nano-encapsulated phase change material slurry. Appl Thermal Eng 98:835–840CrossRef
go back to reference Warzoha R, Fleischer AS (2014) Improved heat recovery from paraffin-based phase change materials due to the presence of percolating graphene networks. IntJ Heat Mass Trans 79:324–333CrossRef Warzoha R, Fleischer AS (2014) Improved heat recovery from paraffin-based phase change materials due to the presence of percolating graphene networks. IntJ Heat Mass Trans 79:324–333CrossRef
go back to reference William PK, Goodson KE (2002) Thermal writing and nanoimaging with a heated atomic force microscope cantilever. Trans ASME J Heat Trans 124(4):597CrossRef William PK, Goodson KE (2002) Thermal writing and nanoimaging with a heated atomic force microscope cantilever. Trans ASME J Heat Trans 124(4):597CrossRef
go back to reference Xia L, Zhang P, Wang R (2010) Preparation and thermal characterization of expanded graphite/paraffin composite phase change material. Carbon 48:2538–2548CrossRef Xia L, Zhang P, Wang R (2010) Preparation and thermal characterization of expanded graphite/paraffin composite phase change material. Carbon 48:2538–2548CrossRef
go back to reference Yamagishi Y, Takeuchi H, Pyatenko A (1999) Characteristics of microencapsulated PCM slurry as a heat-transfer fluid. AICHE J 45:696–707CrossRef Yamagishi Y, Takeuchi H, Pyatenko A (1999) Characteristics of microencapsulated PCM slurry as a heat-transfer fluid. AICHE J 45:696–707CrossRef
go back to reference Yamaguchi M, Nogi T (1977) The Stefan problem. Sangyo-Tosho, Tokyo Yamaguchi M, Nogi T (1977) The Stefan problem. Sangyo-Tosho, Tokyo
go back to reference Yinping Z, Yi J, Yi J (1999) A simple method, the T-history method, of determining the heat of fusion, specific heat and thermal conductivity of phase change materials. Meas Sci Technol 10:201–205CrossRef Yinping Z, Yi J, Yi J (1999) A simple method, the T-history method, of determining the heat of fusion, specific heat and thermal conductivity of phase change materials. Meas Sci Technol 10:201–205CrossRef
go back to reference Zalba B, Marin J, Cabeza LF, Mehling H (2003) Review on thermal energy storage with phase change: materials, heat transfer analysis and applications. Appl Thermal Eng 23:251–283CrossRef Zalba B, Marin J, Cabeza LF, Mehling H (2003) Review on thermal energy storage with phase change: materials, heat transfer analysis and applications. Appl Thermal Eng 23:251–283CrossRef
go back to reference Zhang X, Fan Y, Tao X, Yick KL (2004) Fabrication and properties of microcapsules and nanocapsules containing n-octadecane. Mater Chem Phys 88(2–3):300–307CrossRef Zhang X, Fan Y, Tao X, Yick KL (2004) Fabrication and properties of microcapsules and nanocapsules containing n-octadecane. Mater Chem Phys 88(2–3):300–307CrossRef
go back to reference Zhang Y, Su Y, Zhu Y, Hu X (2001) A General Model for Analyzing the Thermal Performance of the Heat Charging and Discharging Processes of Latent Heat Thermal Energy Storage Systems. Journal of Solar Energy Engineering 123:232–236CrossRef Zhang Y, Su Y, Zhu Y, Hu X (2001) A General Model for Analyzing the Thermal Performance of the Heat Charging and Discharging Processes of Latent Heat Thermal Energy Storage Systems. Journal of Solar Energy Engineering 123:232–236CrossRef
go back to reference Zhang H, Xu Q, Zhao Z, Zhang J, Sun Y, Sun L, Xu F, Sawada Y (2012) Preparation and thermal performance of gypsum boards incorporated with microencapsulated phase change materials for thermal regulations. Sol Energy 102:93–102 Zhang H, Xu Q, Zhao Z, Zhang J, Sun Y, Sun L, Xu F, Sawada Y (2012) Preparation and thermal performance of gypsum boards incorporated with microencapsulated phase change materials for thermal regulations. Sol Energy 102:93–102
go back to reference Zhang P, Ma Z, Shi X, Xiao X (2014a) Thermal conductivity measurements of a phase change material slurry under the influence of phase change. Int J Thermal Sci 78:56–64CrossRef Zhang P, Ma Z, Shi X, Xiao X (2014a) Thermal conductivity measurements of a phase change material slurry under the influence of phase change. Int J Thermal Sci 78:56–64CrossRef
go back to reference Zhang XR, Chen L, Wang T, Zhao Y (2014b) Characterization of thermal and hydrodynamics properties for microencapsulated phase change slurry. Energy Convers Manag 79:317–333CrossRef Zhang XR, Chen L, Wang T, Zhao Y (2014b) Characterization of thermal and hydrodynamics properties for microencapsulated phase change slurry. Energy Convers Manag 79:317–333CrossRef
go back to reference Zhou Y, Jiang Y, Liu F, Li Q (2016) Thermal conductivity and thermal mechanism of aluminium nanoparticles/octadecane composite phase change materials from molecular dynamics simulations and experimental study. J Ovonic Res 12(2):49–58 Zhou Y, Jiang Y, Liu F, Li Q (2016) Thermal conductivity and thermal mechanism of aluminium nanoparticles/octadecane composite phase change materials from molecular dynamics simulations and experimental study. J Ovonic Res 12(2):49–58
Metadata
Title
Phase Change Materials
Authors
Navin Kumar
Debjyoti Banerjee
Copyright Year
2018
DOI
https://doi.org/10.1007/978-3-319-26695-4_53

Premium Partners