Skip to main content
Top
Published in: Metallurgical and Materials Transactions A 3/2020

01-01-2020 | 5th World Congress on Integrated Computational Materials Engineering

Phase-Field Modeling of Microstructure Evolution in the Presence of Bubble During Solidification

Authors: Ang Zhang, Jinglian Du, Xiaopeng Zhang, Zhipeng Guo, Qigui Wang, Shoumei Xiong

Published in: Metallurgical and Materials Transactions A | Issue 3/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Simulation of the solid–liquid–gas interaction during solidification is challenging due to the presence of complex phase interfaces, bubble deformation, and high liquid/gas density ratio. In this work, a hybrid phase-field lattice-Boltzmann (PFLB) approach, together with a parallel and adaptive-mesh-refinement (Para-AMR) algorithm, is developed to model interactions between the gas bubble and solid growth front during solidification. The solid growth and bubble evolution are solved by the phase-field method. Both melt flow and bubble movement are determined by a kinetic-based lattice-Boltzmann model. Bubble dynamics during alloy solidification is modeled and compared with experiments, and a good agreement is achieved for various solid/liquid interfaces including planar, cellular, and dendritic interfaces. Results show that the effect of the bubble on solid array is dependent on the solid/liquid interface morphology, bubble size, and relative position between the bubble center and dendritic tip. Two interaction mechanisms, including engulfment and entrapment, are compared, and the difference is caused mainly by the redistribution of solute. The interaction mechanism between the rising multibubbles with large deformation and the dendritic array is also discussed.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference J.A. Dantzig and M. Rappaz: Solidification, EPFL Press, Lausanne, 2009. J.A. Dantzig and M. Rappaz: Solidification, EPFL Press, Lausanne, 2009.
2.
go back to reference P.D. Lee and J.D. Hunt: Acta Mater., 1997, vol. 45, pp. 4155–69. P.D. Lee and J.D. Hunt: Acta Mater., 1997, vol. 45, pp. 4155–69.
3.
go back to reference H. Liao, L. Zhao, Y. Wu, R. Fan, Q. Wang, and Y. Pan: Metall. Mater. Trans. A, 2012, vol. 43A, pp. 2587–90. H. Liao, L. Zhao, Y. Wu, R. Fan, Q. Wang, and Y. Pan: Metall. Mater. Trans. A, 2012, vol. 43A, pp. 2587–90.
4.
go back to reference L. Arnberg and R.H. Mathiesen: Jom-Us, 2007, vol. 59, pp. 20–26. L. Arnberg and R.H. Mathiesen: Jom-Us, 2007, vol. 59, pp. 20–26.
5.
go back to reference M. Felberbaum and M. Rappaz: Acta Mater., 2011, vol. 59, pp. 6849–60. M. Felberbaum and M. Rappaz: Acta Mater., 2011, vol. 59, pp. 6849–60.
6.
go back to reference L. Zhao, H. Liao, Y. Pan, L. Wang, and Q. Wang: Scripta Mater., 2011, vol. 65, pp. 795–98. L. Zhao, H. Liao, Y. Pan, L. Wang, and Q. Wang: Scripta Mater., 2011, vol. 65, pp. 795–98.
7.
go back to reference S. Morankar, M. Mandal, N. Kourra, M.A. Williams, R. Mitra, and P. Srirangam: Jom-Us, 2019, vol. 71, pp. 4050–58. S. Morankar, M. Mandal, N. Kourra, M.A. Williams, R. Mitra, and P. Srirangam: Jom-Us, 2019, vol. 71, pp. 4050–58.
8.
go back to reference V. Khalajzadeh, K.D. Carlson, D.G. Backman, and C. Beckermann: Metall. Mater. Trans. A, 2017, vol. 48A, pp. 1797–1816. V. Khalajzadeh, K.D. Carlson, D.G. Backman, and C. Beckermann: Metall. Mater. Trans. A, 2017, vol. 48A, pp. 1797–1816.
9.
go back to reference P.D. Lee, A. Chirazi, and D. See: J. Light Met., 2001, vol. 1, pp. 15–30. P.D. Lee, A. Chirazi, and D. See: J. Light Met., 2001, vol. 1, pp. 15–30.
10.
go back to reference C. Pequet, M. Gremaud, and M. Rappaz: Metall. Mater. Trans. A, 2002, vol. 33A, pp. 2095–2106. C. Pequet, M. Gremaud, and M. Rappaz: Metall. Mater. Trans. A, 2002, vol. 33A, pp. 2095–2106.
11.
go back to reference K.D. Carlson, Z. Lin, and C. Beckermann: Metall. Mater. Trans. B, 2007, vol. 38B, pp. 541–55. K.D. Carlson, Z. Lin, and C. Beckermann: Metall. Mater. Trans. B, 2007, vol. 38B, pp. 541–55.
12.
go back to reference Q. Zhang, T. Wang, Z. Yao, and M. Zhu: Materialia, 2018, vol. 4, pp. 211–20. Q. Zhang, T. Wang, Z. Yao, and M. Zhu: Materialia, 2018, vol. 4, pp. 211–20.
13.
go back to reference H. Meidani and A. Jacot: Acta Mater., 2011, vol. 59, pp. 3032–40. H. Meidani and A. Jacot: Acta Mater., 2011, vol. 59, pp. 3032–40.
14.
go back to reference W.J. Boettinger, J.A. Warren, C. Beckermann, and A. Karma: Ann. Rev. Mater. Res., 2002, vol. 32, pp. 163–94. W.J. Boettinger, J.A. Warren, C. Beckermann, and A. Karma: Ann. Rev. Mater. Res., 2002, vol. 32, pp. 163–94.
15.
go back to reference M. Felberbaum and A. Jacot: in Modeling of Casting, Welding, and Advanced Solidification Processes—XII, S.L. Cockcroft and D.M. Maijer, eds., TMS, Warrendale, PA, 2009, pp. 369–76. M. Felberbaum and A. Jacot: in Modeling of Casting, Welding, and Advanced Solidification Processes—XII, S.L. Cockcroft and D.M. Maijer, eds., TMS, Warrendale, PA, 2009, pp. 369–76.
16.
go back to reference A. Carré, B. Böettger, and M. Apel: Int. J. Mater. Res., 2010, vol. 101, pp. 510–14. A. Carré, B. Böettger, and M. Apel: Int. J. Mater. Res., 2010, vol. 101, pp. 510–14.
17.
go back to reference J. Eiken, B. Boettger, and I. Steinbach: Phys. Rev. E, 2006, vol. 73, p. 066122. J. Eiken, B. Boettger, and I. Steinbach: Phys. Rev. E, 2006, vol. 73, p. 066122.
18.
go back to reference L. Du, L. Wang, B. Zheng, and H. Du: Comp. Mater. Sci., 2016, vol. 114, pp. 94–98. L. Du, L. Wang, B. Zheng, and H. Du: Comp. Mater. Sci., 2016, vol. 114, pp. 94–98.
19.
go back to reference J.C. Ramirez, C. Beckermann, A. Karma, and H.J. Diepers: Phys. Rev. E, 2004, vol. 69, p. 051607. J.C. Ramirez, C. Beckermann, A. Karma, and H.J. Diepers: Phys. Rev. E, 2004, vol. 69, p. 051607.
20.
go back to reference A. Zhang, J. Du, Z. Guo, Q. Wang, and S. Xiong: Phys. Rev. E, 2019, vol. 100, p. 023305. A. Zhang, J. Du, Z. Guo, Q. Wang, and S. Xiong: Phys. Rev. E, 2019, vol. 100, p. 023305.
21.
go back to reference T. Krüger, H. Kusumaatmaja, A. Kuzmin, O. Shardt, G. Silva, and E.M. Viggen: The Lattice Boltzmann Method Principles and Practice, Springer, Cham, Switzerland, 2017. T. Krüger, H. Kusumaatmaja, A. Kuzmin, O. Shardt, G. Silva, and E.M. Viggen: The Lattice Boltzmann Method Principles and Practice, Springer, Cham, Switzerland, 2017.
22.
go back to reference A. Zhang, S. Meng, Z. Guo, J. Du, Q. Wang, and S. Xiong: Metall. Mater. Trans. B, 2019, vol. 50B, pp. 1514–26. A. Zhang, S. Meng, Z. Guo, J. Du, Q. Wang, and S. Xiong: Metall. Mater. Trans. B, 2019, vol. 50B, pp. 1514–26.
23.
go back to reference T. Takaki, R. Rojas, S. Sakane, M. Ohno, Y. Shibuta, T. Shimokawabe, and T. Aoki: J. Cryst. Growth, 2017, vol. 474, pp. 146–53. T. Takaki, R. Rojas, S. Sakane, M. Ohno, Y. Shibuta, T. Shimokawabe, and T. Aoki: J. Cryst. Growth, 2017, vol. 474, pp. 146–53.
24.
go back to reference D. Medvedev and K. Kassner: Phys. Rev. E, 2005, vol. 72, p. 056703. D. Medvedev and K. Kassner: Phys. Rev. E, 2005, vol. 72, p. 056703.
25.
go back to reference A. Zhang, J. Du, Z. Guo, Q. Wang, and S. Xiong: Metall. Mater. Trans. B, 2019, vol. 50B, pp. 517–30. A. Zhang, J. Du, Z. Guo, Q. Wang, and S. Xiong: Metall. Mater. Trans. B, 2019, vol. 50B, pp. 517–30.
26.
go back to reference A. Zhang, J. Du, Z. Guo, and S. Xiong: Phys. Rev. E, 2018, vol. 98, p. 043301. A. Zhang, J. Du, Z. Guo, and S. Xiong: Phys. Rev. E, 2018, vol. 98, p. 043301.
27.
go back to reference A. Zhang, J. Du, Z. Guo, Q. Wang, and S. Xiong: Scripta Mater., 2019, vol. 165, pp. 64–67. A. Zhang, J. Du, Z. Guo, Q. Wang, and S. Xiong: Scripta Mater., 2019, vol. 165, pp. 64–67.
28.
go back to reference X. Zhang, J. Kang, Z. Guo, S. Xiong, and Q. Han: Comput. Phys. Commun., 2018, vol. 223, pp. 18–27. X. Zhang, J. Kang, Z. Guo, S. Xiong, and Q. Han: Comput. Phys. Commun., 2018, vol. 223, pp. 18–27.
29.
go back to reference A. Zhang, J. Du, Z. Guo, Q. Wang, and S. Xiong: Philos. Mag., 2019, vol. 99, pp. 2920–40. A. Zhang, J. Du, Z. Guo, Q. Wang, and S. Xiong: Philos. Mag., 2019, vol. 99, pp. 2920–40.
30.
go back to reference A. Zhang, J. Du, Z. Guo, Q. Wang, and S. Xiong: Metall. Mater. Trans. B, 2018, vol. 49B, pp. 3603–15. A. Zhang, J. Du, Z. Guo, Q. Wang, and S. Xiong: Metall. Mater. Trans. B, 2018, vol. 49B, pp. 3603–15.
31.
go back to reference A. Zhang, Z. Guo, Q. Wang, and S. Xiong: Phys. Fluids, 2019, vol. 31, p. 063106. A. Zhang, Z. Guo, Q. Wang, and S. Xiong: Phys. Fluids, 2019, vol. 31, p. 063106.
32.
go back to reference P.L. Bhatnagar, E.P. Gross, and M. Krook: Phys. Rev., 1954, vol. 94, pp. 511–25. P.L. Bhatnagar, E.P. Gross, and M. Krook: Phys. Rev., 1954, vol. 94, pp. 511–25.
33.
go back to reference Z. Guo, C. Zheng, and B. Shi: Phys. Rev. E, 2002, vol. 65, p. 046308. Z. Guo, C. Zheng, and B. Shi: Phys. Rev. E, 2002, vol. 65, p. 046308.
34.
go back to reference C. Beckermann, H.J. Diepers, I. Steinbach, A. Karma, and X. Tong: J. Comput. Phys., 1999, vol. 154, pp. 468–96. C. Beckermann, H.J. Diepers, I. Steinbach, A. Karma, and X. Tong: J. Comput. Phys., 1999, vol. 154, pp. 468–96.
35.
go back to reference A. Fakhari, M. Geier, and T. Lee: J. Comput. Phys., 2016, vol. 315, pp. 434–57. A. Fakhari, M. Geier, and T. Lee: J. Comput. Phys., 2016, vol. 315, pp. 434–57.
36.
go back to reference J. Du, A. Zhang, Z. Guo, M. Yang, M. Li, and S. Xiong: Phys. Rev. Mater., 2018, vol. 2, p. 083402. J. Du, A. Zhang, Z. Guo, M. Yang, M. Li, and S. Xiong: Phys. Rev. Mater., 2018, vol. 2, p. 083402.
37.
go back to reference J. Du, A. Zhang, Z. Guo, M. Yang, M. Li, F. Liu, and S. Xiong: Acta Mater., 2018, vol. 161, pp. 35–46. J. Du, A. Zhang, Z. Guo, M. Yang, M. Li, F. Liu, and S. Xiong: Acta Mater., 2018, vol. 161, pp. 35–46.
38.
go back to reference A. Zhang, Z. Guo, and S.M. Xiong: Phys. Rev. E, 2018, vol. 97, p. 053302. A. Zhang, Z. Guo, and S.M. Xiong: Phys. Rev. E, 2018, vol. 97, p. 053302.
39.
go back to reference M. Berger and I. Rigoutsos: IEEE Trans. Syst. Man. Cybern., 1991, vol. 21, pp. 1278–86. M. Berger and I. Rigoutsos: IEEE Trans. Syst. Man. Cybern., 1991, vol. 21, pp. 1278–86.
40.
go back to reference J. Du, A. Zhang, Z. Guo, M. Yang, M. Li, and S. Xiong: ACS Omega, 2017, vol. 2, pp. 8803–09. J. Du, A. Zhang, Z. Guo, M. Yang, M. Li, and S. Xiong: ACS Omega, 2017, vol. 2, pp. 8803–09.
41.
go back to reference A. Karma and W. Rappel: Phys. Rev. E, 1998, vol. 57, pp. 4323–49. A. Karma and W. Rappel: Phys. Rev. E, 1998, vol. 57, pp. 4323–49.
42.
go back to reference S. Hou, Q. Zou, S. Chen, G. Doolen, and A. Cogley: J. Comput. Phys., 1994, vol. 118, pp. 329–47. S. Hou, Q. Zou, S. Chen, G. Doolen, and A. Cogley: J. Comput. Phys., 1994, vol. 118, pp. 329–47.
43.
go back to reference H.Z. Yuan, C. Shu, Y. Wang, and S. Shu: Phys. Fluids, 2018, vol. 30, p. 040908. H.Z. Yuan, C. Shu, Y. Wang, and S. Shu: Phys. Fluids, 2018, vol. 30, p. 040908.
44.
go back to reference R. Krishna, M.I. Urseanu, J.M. van Baten, and J. Ellenberger: Int. Commun. Heat Mass Transfer, 1999, vol. 26, pp. 781–90. R. Krishna, M.I. Urseanu, J.M. van Baten, and J. Ellenberger: Int. Commun. Heat Mass Transfer, 1999, vol. 26, pp. 781–90.
45.
go back to reference D. Bhaga and M.E. Weber: J. Fluid Mech., 1981, vol. 105, pp. 61–85. D. Bhaga and M.E. Weber: J. Fluid Mech., 1981, vol. 105, pp. 61–85.
46.
go back to reference M. Alizadeh, S.M. Seyyedi, M.T. Rahni, and D.D. Ganji: J. Mol. Liq., 2017, vol. 236, pp. 151–61. M. Alizadeh, S.M. Seyyedi, M.T. Rahni, and D.D. Ganji: J. Mol. Liq., 2017, vol. 236, pp. 151–61.
47.
go back to reference A. Zhang, J. Du, S. Meng, F. Liu, Z. Guo, Q. Wang, and S. Xiong: Comp. Mater. Sci., 2019, vol. 171, p. 109274. A. Zhang, J. Du, S. Meng, F. Liu, Z. Guo, Q. Wang, and S. Xiong: Comp. Mater. Sci., 2019, vol. 171, p. 109274.
48.
go back to reference H. Xing, J.Y. Wang, C.L. Chen, K.X. Jin, and Z.F. Shen: Scripta Mater., 2010, vol. 63, pp. 1228–31. H. Xing, J.Y. Wang, C.L. Chen, K.X. Jin, and Z.F. Shen: Scripta Mater., 2010, vol. 63, pp. 1228–31.
49.
go back to reference H. Xing, J.Y. Wang, C.L. Chen, Z.F. Shen, and C.W. Zhao: J. Cryst. Growth, 2012, vol. 338, pp. 256–61. H. Xing, J.Y. Wang, C.L. Chen, Z.F. Shen, and C.W. Zhao: J. Cryst. Growth, 2012, vol. 338, pp. 256–61.
50.
go back to reference W.W. Mullins and R.F. Sekerka: J. Appl. Phys., 1964, vol. 35, pp. 444–51. W.W. Mullins and R.F. Sekerka: J. Appl. Phys., 1964, vol. 35, pp. 444–51.
51.
go back to reference S.H. Han and R. Trivedi: Acta Metall. Mater., 1994, vol. 42, pp. 25–41. S.H. Han and R. Trivedi: Acta Metall. Mater., 1994, vol. 42, pp. 25–41.
Metadata
Title
Phase-Field Modeling of Microstructure Evolution in the Presence of Bubble During Solidification
Authors
Ang Zhang
Jinglian Du
Xiaopeng Zhang
Zhipeng Guo
Qigui Wang
Shoumei Xiong
Publication date
01-01-2020
Publisher
Springer US
Published in
Metallurgical and Materials Transactions A / Issue 3/2020
Print ISSN: 1073-5623
Electronic ISSN: 1543-1940
DOI
https://doi.org/10.1007/s11661-019-05593-3

Other articles of this Issue 3/2020

Metallurgical and Materials Transactions A 3/2020 Go to the issue

Premium Partners