Skip to main content
Top
Published in: Journal of Iron and Steel Research International 11/2023

07-08-2023 | Original Paper

Phase precipitation and corrosion properties of copper-bearing ferritic stainless steels by annealing process

Authors: Fan Wang, De-ning Zou, Xing-yu Yan, Ying-bo Zhang, Ji-xiang Pan, Yun-xia Cheng, Ran Xu, Yi-cheng Jiang

Published in: Journal of Iron and Steel Research International | Issue 11/2023

Login to get access

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The effects of different annealing processes on the phase precipitation behavior and corrosion properties of copper-bearing 430 ferritic stainless steel were systematically investigated. The shape, quantity and distribution of copper-rich precipitates by different annealing processes were characterized by scanning electron microscopy, transmission electron microscopy, backscatter electron and backscatter diffraction. The pitting resistance behavior in simulated physiological saline environments (0.9 wt.% NaCl) was investigated using electrochemical workstation and X-ray photoelectron spectroscopy. The results showed that the copper-rich phase prepared by repeated rolling and annealing gradually changed from long needle-like to short thick rod-like and granular, whose distribution tended to be uniform and diffusive, and the number of copper-rich phases increased. After solution/antibacterial annealing process, the size and density of the copper-rich phase increase, resulting in a discontinuity of the passivation film on the stainless steel, which reduces the pitting resistance to some extent. The refinement mechanism revealed that pre-deformation brings about a modification in both precipitation mechanism and growth kinetics of epsilon copper.
Literature
[1]
go back to reference Z.X. Zhang, G. Lin, Z. Xu, J. Mater. Process. Technol. 205 (2008) 419–424. Z.X. Zhang, G. Lin, Z. Xu, J. Mater. Process. Technol. 205 (2008) 419–424.
[2]
go back to reference J. Xiong, B.F. Xu, H.W. Ni, Int. J. Miner. Metall. Mater. 16 (2009) 293–298. J. Xiong, B.F. Xu, H.W. Ni, Int. J. Miner. Metall. Mater. 16 (2009) 293–298.
[3]
go back to reference I.T. Hong, C.H. Koo, Mater. Sci. Eng. A 393 (2005) 213–222. I.T. Hong, C.H. Koo, Mater. Sci. Eng. A 393 (2005) 213–222.
[4]
go back to reference S.H. Chen, M.Q. Lv, J.D. Zhang, J.S. Dong, K. Yang, Acta. Metall. Sin. 40 (2004) 314–318. S.H. Chen, M.Q. Lv, J.D. Zhang, J.S. Dong, K. Yang, Acta. Metall. Sin. 40 (2004) 314–318.
[5]
go back to reference L. Ren, L. Nan, K. Yang, Mater. Des. 32 (2011) 2374–2379. L. Ren, L. Nan, K. Yang, Mater. Des. 32 (2011) 2374–2379.
[6]
go back to reference S. Takaki, M. Fujioka, S. Aihara, Y. Nagataki, T. Yamashita, N. Sano, Y. Adachi, M. Nomura, H. Yaguchi, Mater. Trans. 45 (2004) 2239–2244. S. Takaki, M. Fujioka, S. Aihara, Y. Nagataki, T. Yamashita, N. Sano, Y. Adachi, M. Nomura, H. Yaguchi, Mater. Trans. 45 (2004) 2239–2244.
[7]
go back to reference J. Takahashi, K. Kawakami, Y. Kobayashi, Mater. Sci. Eng. A 535 (2012) 144–152. J. Takahashi, K. Kawakami, Y. Kobayashi, Mater. Sci. Eng. A 535 (2012) 144–152.
[8]
go back to reference T. Ujiro, S. Satoh, R.W. Staehle, W.H. Smyrl, Corros. Sci. 43 (2001) 2185–2200. T. Ujiro, S. Satoh, R.W. Staehle, W.H. Smyrl, Corros. Sci. 43 (2001) 2185–2200.
[9]
go back to reference V.A. Hosseini, K. Hurtig, D. Gonzalez, J. Oliver, N. Folkeson, M. Thuvander, K. Lindgren, L. Karlsson, J. Mater. Res. Technol. 15 (2021) 3951–3964. V.A. Hosseini, K. Hurtig, D. Gonzalez, J. Oliver, N. Folkeson, M. Thuvander, K. Lindgren, L. Karlsson, J. Mater. Res. Technol. 15 (2021) 3951–3964.
[10]
go back to reference L. Ma, S. Hu, J. Shen, J. Han, Mater. Lett. 184 (2016) 204–207. L. Ma, S. Hu, J. Shen, J. Han, Mater. Lett. 184 (2016) 204–207.
[11]
go back to reference G.N. Nigon, O. Burkan Isgor, S. Pasebani, Opt. Laser Technol. 134 (2021) 106643. G.N. Nigon, O. Burkan Isgor, S. Pasebani, Opt. Laser Technol. 134 (2021) 106643.
[12]
go back to reference D. Chatterjee, Mater. Today Proc. 46 (2021) 10612–10618. D. Chatterjee, Mater. Today Proc. 46 (2021) 10612–10618.
[13]
go back to reference H. Li, Y. Han, H. Feng, G. Zhou, Z. Jiang, M. Cai, Y. Li, M. Huang, J. Mater. Sci. Technol. 141 (2023) 184–192. H. Li, Y. Han, H. Feng, G. Zhou, Z. Jiang, M. Cai, Y. Li, M. Huang, J. Mater. Sci. Technol. 141 (2023) 184–192.
[14]
go back to reference H. Liu, L. Wei, M. Ma, J. Zheng, L. Chen, R.D.K. Misra, J. Mater. Res. Technol. 9 (2020) 2127–2135. H. Liu, L. Wei, M. Ma, J. Zheng, L. Chen, R.D.K. Misra, J. Mater. Res. Technol. 9 (2020) 2127–2135.
[15]
go back to reference M. Akita, T. Kakiuchi, Y. Uematsu, Procedia Eng. 10 (2011) 100–105. M. Akita, T. Kakiuchi, Y. Uematsu, Procedia Eng. 10 (2011) 100–105.
[16]
go back to reference T. Yamagishi, M. Akita, M. Nakajima, Y. Uematsu, K. Tokaji, Procedia Eng. 2 (2010) 275–281. T. Yamagishi, M. Akita, M. Nakajima, Y. Uematsu, K. Tokaji, Procedia Eng. 2 (2010) 275–281.
[17]
go back to reference M.B. Cortie, H. Pollak, Mater. Sci. Eng. A 199 (1995) 153–163. M.B. Cortie, H. Pollak, Mater. Sci. Eng. A 199 (1995) 153–163.
[18]
go back to reference R. Li, B.G. Fu, T.S. Dong, G.L. Li, J.K. Li, X.B. Zhao, J.H. Liu, J. Mater. Res. Technol. 18 (2022) 448–460. R. Li, B.G. Fu, T.S. Dong, G.L. Li, J.K. Li, X.B. Zhao, J.H. Liu, J. Mater. Res. Technol. 18 (2022) 448–460.
[19]
go back to reference H. Li, T. Zhu, N. Takata, M. Kobashi, M. Yoshino, Mater. Sci. Eng. A 803 (2021) 140455. H. Li, T. Zhu, N. Takata, M. Kobashi, M. Yoshino, Mater. Sci. Eng. A 803 (2021) 140455.
[20]
go back to reference X.Y. San, B. Zhang, B. Wu, X.X. Wei, E.E. Oguzie, X.L. Ma, Corros. Sci. 130 (2018) 143–152. X.Y. San, B. Zhang, B. Wu, X.X. Wei, E.E. Oguzie, X.L. Ma, Corros. Sci. 130 (2018) 143–152.
[21]
go back to reference Y.F. Liu, H. Lu, S.H. Sun, A.M. Zhao, Trans. Mater. Heat Treat. 40 (2019) No. 12, 93–98. Y.F. Liu, H. Lu, S.H. Sun, A.M. Zhao, Trans. Mater. Heat Treat. 40 (2019) No. 12, 93–98.
[22]
go back to reference M. Jiang, Y. Han, J. Sun, J. Sun, G. Zu, H. Chen, X. Ran, Mater. Charact. 179 (2021) 111346. M. Jiang, Y. Han, J. Sun, J. Sun, G. Zu, H. Chen, X. Ran, Mater. Charact. 179 (2021) 111346.
[23]
go back to reference Y.U. Heo, Y.K. Kim, J.S. Kim, J.K. Kim, Acta Mater. 61 (2013) 519–528. Y.U. Heo, Y.K. Kim, J.S. Kim, J.K. Kim, Acta Mater. 61 (2013) 519–528.
[24]
go back to reference Z.X. Zhang, G. Lin, X. Zhou, Trans. Mater. Heat Treat. 29 (2008) No. 5, 93–96. Z.X. Zhang, G. Lin, X. Zhou, Trans. Mater. Heat Treat. 29 (2008) No. 5, 93–96.
[25]
go back to reference T. Xi, M.B. Shahzad, D. Xu, J.L. Zhao, C.G. Yang, M. Qi, K. Yang, Mater. Sci. Eng. A 675 (2016) 243–252. T. Xi, M.B. Shahzad, D. Xu, J.L. Zhao, C.G. Yang, M. Qi, K. Yang, Mater. Sci. Eng. A 675 (2016) 243–252.
[26]
go back to reference F. Luo, Z. Tang, S. Xiao, Y. Xiang, Mater. Technol. 34 (2019) 525–533. F. Luo, Z. Tang, S. Xiao, Y. Xiang, Mater. Technol. 34 (2019) 525–533.
[27]
go back to reference M.K. Jiang, Y. Han, X.Y. Chen, G.Q. Zu, W.W. Zhu, X. Ran, J. Mater. Sci. Technol. 121 (2022) 93–98. M.K. Jiang, Y. Han, X.Y. Chen, G.Q. Zu, W.W. Zhu, X. Ran, J. Mater. Sci. Technol. 121 (2022) 93–98.
[28]
go back to reference Z.B. Jiao, J.H. Luan, M.K. Miller, Y.W. Chung, C.T. Liu, Mater. Today 20 (2017) 142–154. Z.B. Jiao, J.H. Luan, M.K. Miller, Y.W. Chung, C.T. Liu, Mater. Today 20 (2017) 142–154.
[29]
go back to reference B.C. Zhou, T. Yang, G. Zhou, H. Wang, J.H. Luan, Z.B. Jiao, Acta Mater. 205 (2021) 116561. B.C. Zhou, T. Yang, G. Zhou, H. Wang, J.H. Luan, Z.B. Jiao, Acta Mater. 205 (2021) 116561.
[30]
go back to reference Z.Y. Liang, X. Wang, W. Huang, M.X. Huang, Acta Mater. 88 (2015) 170–179. Z.Y. Liang, X. Wang, W. Huang, M.X. Huang, Acta Mater. 88 (2015) 170–179.
[31]
go back to reference Z.Y. Liang, Y.Z. Li, M.X. Huang, Scripta Mater. 112 (2016) 28–31. Z.Y. Liang, Y.Z. Li, M.X. Huang, Scripta Mater. 112 (2016) 28–31.
[32]
go back to reference G. Meng, Y. Li, Y. Shao, T. Zhang, Y. Wang, F. Wang, X. Cheng, C. Dong, X. Li, J. Mater. Sci. Technol. 32 (2016) 465–469. G. Meng, Y. Li, Y. Shao, T. Zhang, Y. Wang, F. Wang, X. Cheng, C. Dong, X. Li, J. Mater. Sci. Technol. 32 (2016) 465–469.
[33]
go back to reference Z. Duan, C. Man, C. Dong, Z. Cui, D. Kong, L. Wang, X. Wang, Corros. Sci. 167 (2020) 108520. Z. Duan, C. Man, C. Dong, Z. Cui, D. Kong, L. Wang, X. Wang, Corros. Sci. 167 (2020) 108520.
[34]
go back to reference L. Wang, Y. Dou, S. Han, J. Wu, Z. Cui, Appl. Surf. Sci. 504 (2020) 144340. L. Wang, Y. Dou, S. Han, J. Wu, Z. Cui, Appl. Surf. Sci. 504 (2020) 144340.
[35]
go back to reference H. Tian, L. Fan, Y. Li, K. Pang, F. Chu, X. Wang, Z. Cui, J. Electroanal. Chem. 894 (2021) 115368. H. Tian, L. Fan, Y. Li, K. Pang, F. Chu, X. Wang, Z. Cui, J. Electroanal. Chem. 894 (2021) 115368.
[36]
go back to reference N. Ebrahimi, M. Momeni, A. Kosari, M. Zakeri, M.H. Moayed, Corros. Sci. 59 (2012) 96–102. N. Ebrahimi, M. Momeni, A. Kosari, M. Zakeri, M.H. Moayed, Corros. Sci. 59 (2012) 96–102.
[37]
go back to reference Y.W. Song, D.Y. Shan, E.H. Han, J. Mater. Sci. Technol. 33 (2017) 954–960. Y.W. Song, D.Y. Shan, E.H. Han, J. Mater. Sci. Technol. 33 (2017) 954–960.
[38]
go back to reference S. Yin, W. Duan, W. Liu, L. Wu, J. Yu, Z. Zhao, M. Liu, P. Wang, J. Cui, Z. Zhang, Corros. Sci. 166 (2020) 108419. S. Yin, W. Duan, W. Liu, L. Wu, J. Yu, Z. Zhao, M. Liu, P. Wang, J. Cui, Z. Zhang, Corros. Sci. 166 (2020) 108419.
[39]
go back to reference Y.K. Wei, Y.J. Li, Y. Zhang, X.T. Luo, C.J. Li, Corros. Sci. 138 (2018) 105–115. Y.K. Wei, Y.J. Li, Y. Zhang, X.T. Luo, C.J. Li, Corros. Sci. 138 (2018) 105–115.
[40]
go back to reference D. Zander, N.A. Zumdick, Corros. Sci. 93 (2015) 222–233. D. Zander, N.A. Zumdick, Corros. Sci. 93 (2015) 222–233.
[41]
go back to reference P.P. Wu, F.J. Xu, K.K. Deng, F.Y. Han, Z.Z. Zhang, R. Gao, Corros. Sci. 127 (2017) 280–290. P.P. Wu, F.J. Xu, K.K. Deng, F.Y. Han, Z.Z. Zhang, R. Gao, Corros. Sci. 127 (2017) 280–290.
[42]
go back to reference Y. Liu, J. Yang, H. Yang, K. Li, Y. Qiu, W. Zhang, S. Zhou, Surf. Coat. Technol. 428 (2021) 127868. Y. Liu, J. Yang, H. Yang, K. Li, Y. Qiu, W. Zhang, S. Zhou, Surf. Coat. Technol. 428 (2021) 127868.
[43]
go back to reference A. Di Paola, Electrochim. Acta 34 (1989) 203–210. A. Di Paola, Electrochim. Acta 34 (1989) 203–210.
[44]
go back to reference S.P. Harrington, T.M. Devine, J. Electrochem. Soc. 155 (2008) C381–C386. S.P. Harrington, T.M. Devine, J. Electrochem. Soc. 155 (2008) C381–C386.
[45]
go back to reference H. Feng, H.B. Li, J. Dai, Y. Han, J.D. Qu, Z.H. Jiang, Y. Zhao, T. Zhang, Corros. Sci. 204 (2022) 110396. H. Feng, H.B. Li, J. Dai, Y. Han, J.D. Qu, Z.H. Jiang, Y. Zhao, T. Zhang, Corros. Sci. 204 (2022) 110396.
[46]
go back to reference D.D. MacDonald, J. Electrochem. Soc. 139 (1992) 3434–3449. D.D. MacDonald, J. Electrochem. Soc. 139 (1992) 3434–3449.
Metadata
Title
Phase precipitation and corrosion properties of copper-bearing ferritic stainless steels by annealing process
Authors
Fan Wang
De-ning Zou
Xing-yu Yan
Ying-bo Zhang
Ji-xiang Pan
Yun-xia Cheng
Ran Xu
Yi-cheng Jiang
Publication date
07-08-2023
Publisher
Springer Nature Singapore
Published in
Journal of Iron and Steel Research International / Issue 11/2023
Print ISSN: 1006-706X
Electronic ISSN: 2210-3988
DOI
https://doi.org/10.1007/s42243-023-01024-1

Other articles of this Issue 11/2023

Journal of Iron and Steel Research International 11/2023 Go to the issue

Premium Partners