Skip to main content
Top
Published in: Metallurgical and Materials Transactions A 1/2019

05-11-2018 | Communication

Phase Stability Effects on Hydrogen Embrittlement Resistance in Martensite–Reverted Austenite Steels

Authors: B. C. Cameron, M. Koyama, C. C. Tasan

Published in: Metallurgical and Materials Transactions A | Issue 1/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Earlier studies have shown that interlath austenite in martensitic steels can enhance hydrogen embrittlement (HE) resistance. However, the improvements were limited due to microcrack nucleation and growth. A novel microstructural design approach is investigated, based on enhancing austenite stability to reduce crack nucleation and growth. Our findings from mechanical tests, X-ray diffraction, and scanning electron microscopy reveal that this strategy is successful. However, the improvements are limited due to intrinsic microstructural heterogeneity effects.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Footnotes
1
Note that an \( \varepsilon \)-martensite phase that occurs is an intermediate phase that can occur during the \( \gamma \to \alpha ^{\prime} \) transformation, though it is relatively stable during deformation.[10,35,36]
 
2
Comparison is made using the mean of the three \( {\text{MA}}_{\text{H}} \) samples and the single \( {\text{MA}}_{\text{CR - H}} \) sample with an equivalent time between H charging and mechanical testing, although the other \( {\text{MA}}_{\text{CR - H}} \) samples had similar mechanical properties.
 
3
It was not possible to quantify this point due to inconsistencies of the voids introduced during different sample preparation. Nevertheless, there were no observations of the void clusters after observing several 20×20 m high resolution ECC images containing a large number of grains (on the order of ten thousand).
 
Literature
1.
go back to reference 1 G. Yagawa, Y. Kanto, S. Yoshimura, H. Machida, and K. Shibata: Nucl. Eng. Des., 2001, vol. 207, pp. 269–86.CrossRef 1 G. Yagawa, Y. Kanto, S. Yoshimura, H. Machida, and K. Shibata: Nucl. Eng. Des., 2001, vol. 207, pp. 269–86.CrossRef
2.
go back to reference J. Pierre, R. Francois, and P. Christophe: in Proceedings of the ASME 2013 Pressure Vessels and Piping Conference, Paris, 2013, pp. 1–8. J. Pierre, R. Francois, and P. Christophe: in Proceedings of the ASME 2013 Pressure Vessels and Piping Conference, Paris, 2013, pp. 1–8.
3.
go back to reference 3 G. Lovicu, M. Bottazzi, F.D. Aiuto, M.D.E. Sanctis, A. Dimatteo, and C. Santus: Meallurgical Mater. Trans. A, 2012, vol. 43, pp. 4075–87.CrossRef 3 G. Lovicu, M. Bottazzi, F.D. Aiuto, M.D.E. Sanctis, A. Dimatteo, and C. Santus: Meallurgical Mater. Trans. A, 2012, vol. 43, pp. 4075–87.CrossRef
4.
go back to reference 4 M. Loidl, O. Kolk, S. Veith, and T. Göbel: Materwiss. Werksttech., 2011, vol. 42, pp. 1105–10.CrossRef 4 M. Loidl, O. Kolk, S. Veith, and T. Göbel: Materwiss. Werksttech., 2011, vol. 42, pp. 1105–10.CrossRef
5.
go back to reference 5 J. Capelle, J. Gilgert, I. Dmytrakh, and G. Pluvinage: Int. J. Hydrogen Energy, 2008, vol. 33, pp. 7630–41.CrossRef 5 J. Capelle, J. Gilgert, I. Dmytrakh, and G. Pluvinage: Int. J. Hydrogen Energy, 2008, vol. 33, pp. 7630–41.CrossRef
6.
go back to reference 6 M. Perrin, L. Gaillet, C. Tessier, and H. Idrissi: Corros. Sci., 2010, vol. 52, pp. 1915–26.CrossRef 6 M. Perrin, L. Gaillet, C. Tessier, and H. Idrissi: Corros. Sci., 2010, vol. 52, pp. 1915–26.CrossRef
7.
go back to reference 7 M. Koyama, E. Akiyama, K. Tsuzaki, and D. Raabe: Acta Mater., 2013, vol. 61, pp. 4607–18.CrossRef 7 M. Koyama, E. Akiyama, K. Tsuzaki, and D. Raabe: Acta Mater., 2013, vol. 61, pp. 4607–18.CrossRef
8.
go back to reference 8 M. Koyama, C.C. Tasan, E. Akiyama, K. Tsuzaki, and D. Raabe: Acta Mater., 2014, vol. 70, pp. 174–87.CrossRef 8 M. Koyama, C.C. Tasan, E. Akiyama, K. Tsuzaki, and D. Raabe: Acta Mater., 2014, vol. 70, pp. 174–87.CrossRef
9.
10.
go back to reference 10 M.M. Wang, C.C. Tasan, D. Ponge, A. Kostka, and D. Raabe: Acta Mater., 2014, vol. 79, pp. 268–81.CrossRef 10 M.M. Wang, C.C. Tasan, D. Ponge, A. Kostka, and D. Raabe: Acta Mater., 2014, vol. 79, pp. 268–81.CrossRef
11.
go back to reference 11 M.M. Wang, C.C. Tasan, D. Ponge, and D. Raabe: Acta Mater., 2016, vol. 111, pp. 262–72.CrossRef 11 M.M. Wang, C.C. Tasan, D. Ponge, and D. Raabe: Acta Mater., 2016, vol. 111, pp. 262–72.CrossRef
12.
go back to reference 12 M. Koyama, Z. Zhang, M. Wang, D. Ponge, D. Raabe, K. Tsuzaki, H. Noguchi, and C.C. Tasan: Science., 2017, vol. 355, pp. 1055–7.CrossRef 12 M. Koyama, Z. Zhang, M. Wang, D. Ponge, D. Raabe, K. Tsuzaki, H. Noguchi, and C.C. Tasan: Science., 2017, vol. 355, pp. 1055–7.CrossRef
13.
go back to reference R.A. McCoy, W.W. Gerberich, and V.F. Zackay: Metall. Trans., 1970, vol. 1, pp. 2031–34.CrossRef R.A. McCoy, W.W. Gerberich, and V.F. Zackay: Metall. Trans., 1970, vol. 1, pp. 2031–34.CrossRef
14.
go back to reference Y.D. Park, I.S. Maroef, A. Landau, and D.L. Olson: Weld. Res., 2002, pp. 27–35. Y.D. Park, I.S. Maroef, A. Landau, and D.L. Olson: Weld. Res., 2002, pp. 27–35.
15.
go back to reference 15 M.M. Wang, C.C. Tasan, D. Ponge, A.C. Dippel, and D. Raabe: Acta Mater., 2015, vol. 85, pp. 216–28.CrossRef 15 M.M. Wang, C.C. Tasan, D. Ponge, A.C. Dippel, and D. Raabe: Acta Mater., 2015, vol. 85, pp. 216–28.CrossRef
16.
go back to reference M. Wang, C.C. Tasan, M. Koyama, D. Ponge, and D. Raabe: Metall. Mater. Trans. A, 2015, vol. 46A. M. Wang, C.C. Tasan, M. Koyama, D. Ponge, and D. Raabe: Metall. Mater. Trans. A, 2015, vol. 46A.
17.
go back to reference 17 J.Y. Lee and S.M. Lee: Surf. Coatings Technol., 1986, vol. 28, pp. 301–14.CrossRef 17 J.Y. Lee and S.M. Lee: Surf. Coatings Technol., 1986, vol. 28, pp. 301–14.CrossRef
18.
go back to reference 18 K.G. Solheim, J.K. Solberg, J. Walmsley, F. Rosenqvist, and T.H. Bjørnå: Eng. Fail. Anal., 2013, vol. 34, pp. 140–9.CrossRef 18 K.G. Solheim, J.K. Solberg, J. Walmsley, F. Rosenqvist, and T.H. Bjørnå: Eng. Fail. Anal., 2013, vol. 34, pp. 140–9.CrossRef
19.
go back to reference 19 J.H. Ryu, Y.S. Chun, C.S. Lee, H.K.D.H. Bhadeshia, and D.W. Suh: Acta Mater., 2012, vol. 60, pp. 4085–92.CrossRef 19 J.H. Ryu, Y.S. Chun, C.S. Lee, H.K.D.H. Bhadeshia, and D.W. Suh: Acta Mater., 2012, vol. 60, pp. 4085–92.CrossRef
20.
go back to reference 20 J. Han, J.H. Nam, and Y.K. Lee: Acta Mater., 2016, vol. 113, pp. 1–10.CrossRef 20 J. Han, J.H. Nam, and Y.K. Lee: Acta Mater., 2016, vol. 113, pp. 1–10.CrossRef
21.
go back to reference 21 G. Frommeyer, U. Brüx, and P. Neumann: ISIJ Int., 2003, vol. 43, pp. 438–46.CrossRef 21 G. Frommeyer, U. Brüx, and P. Neumann: ISIJ Int., 2003, vol. 43, pp. 438–46.CrossRef
22.
go back to reference E. De Moor, S. Lacroix, A.J. Clarke, J. Penning, and J.G. Speer: Metall. Mater. Trans. A, 2008, vol. 39, p. 2586.CrossRef E. De Moor, S. Lacroix, A.J. Clarke, J. Penning, and J.G. Speer: Metall. Mater. Trans. A, 2008, vol. 39, p. 2586.CrossRef
23.
go back to reference 23 T. Michler, C. San Marchi, J. Naumann, S. Weber, and M. Martin: Int. J. Hydrogen Energy, 2012, vol. 37, pp. 16231–46.CrossRef 23 T. Michler, C. San Marchi, J. Naumann, S. Weber, and M. Martin: Int. J. Hydrogen Energy, 2012, vol. 37, pp. 16231–46.CrossRef
24.
go back to reference 24 J. Sojka, V. Vodárek, I. Schindler, C. Ly, M. Jérôme, P. Váňová, N. Ruscassier, and A. Wenglorzová: Corros. Sci., 2011, vol. 53, pp. 2575–81.CrossRef 24 J. Sojka, V. Vodárek, I. Schindler, C. Ly, M. Jérôme, P. Váňová, N. Ruscassier, and A. Wenglorzová: Corros. Sci., 2011, vol. 53, pp. 2575–81.CrossRef
25.
27.
go back to reference 27 M. Nagumo: Fundamentals of Hydrogen Embrittlement, Springer, Singapore, 2016.CrossRef 27 M. Nagumo: Fundamentals of Hydrogen Embrittlement, Springer, Singapore, 2016.CrossRef
28.
go back to reference 28 J. Blaber, B. Adair, and A. Antoniou: Exp. Mech., 2015, vol. 55, pp. 1105–22.CrossRef 28 J. Blaber, B. Adair, and A. Antoniou: Exp. Mech., 2015, vol. 55, pp. 1105–22.CrossRef
29.
go back to reference 29 A. Nagao, C.D. Smith, M. Dadfarnia, P. Sofronis, and I.M. Robertson: Acta Mater., 2012, vol. 60, pp. 5182–9.CrossRef 29 A. Nagao, C.D. Smith, M. Dadfarnia, P. Sofronis, and I.M. Robertson: Acta Mater., 2012, vol. 60, pp. 5182–9.CrossRef
30.
go back to reference 30 M.L. Martin, B.P. Somerday, R.O. Ritchie, P. Sofronis, and I.M. Robertson: Acta Mater., 2012, vol. 60, pp. 2739–45.CrossRef 30 M.L. Martin, B.P. Somerday, R.O. Ritchie, P. Sofronis, and I.M. Robertson: Acta Mater., 2012, vol. 60, pp. 2739–45.CrossRef
31.
go back to reference 31 J.L. Zhang, C.C. Tasan, M.L. Lai, J. Zhang, and D. Raabe: J. Mater. Sci., 2015, vol. 50, pp. 5694–708.CrossRef 31 J.L. Zhang, C.C. Tasan, M.L. Lai, J. Zhang, and D. Raabe: J. Mater. Sci., 2015, vol. 50, pp. 5694–708.CrossRef
32.
go back to reference 32 R. Ueji, N. Tsuji, Y. Minamino, and Y. Koizumi: Sci. Technol. Adv. Mater., 2004, vol. 5, pp. 153–62.CrossRef 32 R. Ueji, N. Tsuji, Y. Minamino, and Y. Koizumi: Sci. Technol. Adv. Mater., 2004, vol. 5, pp. 153–62.CrossRef
33.
go back to reference 33 X. Zhu, W. Li, H. Zhao, L. Wang, and X. Jin: Int. J. Hydrogen Energy, 2014, vol. 39, pp. 13031–40.CrossRef 33 X. Zhu, W. Li, H. Zhao, L. Wang, and X. Jin: Int. J. Hydrogen Energy, 2014, vol. 39, pp. 13031–40.CrossRef
34.
go back to reference 34 A.A. Griffith: Philos. Trans. R. Soc. london. Ser. A, 1921, vol. 221, pp. 163–98.CrossRef 34 A.A. Griffith: Philos. Trans. R. Soc. london. Ser. A, 1921, vol. 221, pp. 163–98.CrossRef
35.
go back to reference 35 Y.S. Chun, J.S. Kim, K.T. Park, Y.K. Lee, and C.S. Lee: Mater. Sci. Eng. A, 2012, vol. 533, pp. 87–95.CrossRef 35 Y.S. Chun, J.S. Kim, K.T. Park, Y.K. Lee, and C.S. Lee: Mater. Sci. Eng. A, 2012, vol. 533, pp. 87–95.CrossRef
36.
go back to reference 36 T.H. Lee, E. Shin, C.S. Oh, H.Y. Ha, and S.J. Kim: Acta Mater., 2010, vol. 58, pp. 3173–86.CrossRef 36 T.H. Lee, E. Shin, C.S. Oh, H.Y. Ha, and S.J. Kim: Acta Mater., 2010, vol. 58, pp. 3173–86.CrossRef
Metadata
Title
Phase Stability Effects on Hydrogen Embrittlement Resistance in Martensite–Reverted Austenite Steels
Authors
B. C. Cameron
M. Koyama
C. C. Tasan
Publication date
05-11-2018
Publisher
Springer US
Published in
Metallurgical and Materials Transactions A / Issue 1/2019
Print ISSN: 1073-5623
Electronic ISSN: 1543-1940
DOI
https://doi.org/10.1007/s11661-018-4948-x

Other articles of this Issue 1/2019

Metallurgical and Materials Transactions A 1/2019 Go to the issue

Topical Collection: Carl Koch Symposium: Mechanical Behavior of Nanomaterials

Effects of Constituent Elements and Fabrication Methods on Mechanical Behavior of High-Entropy Alloys: A Review

Premium Partners