Skip to main content
Erschienen in: Metallurgical and Materials Transactions A 1/2019

05.11.2018 | Communication

Phase Stability Effects on Hydrogen Embrittlement Resistance in Martensite–Reverted Austenite Steels

verfasst von: B. C. Cameron, M. Koyama, C. C. Tasan

Erschienen in: Metallurgical and Materials Transactions A | Ausgabe 1/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Earlier studies have shown that interlath austenite in martensitic steels can enhance hydrogen embrittlement (HE) resistance. However, the improvements were limited due to microcrack nucleation and growth. A novel microstructural design approach is investigated, based on enhancing austenite stability to reduce crack nucleation and growth. Our findings from mechanical tests, X-ray diffraction, and scanning electron microscopy reveal that this strategy is successful. However, the improvements are limited due to intrinsic microstructural heterogeneity effects.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
Note that an \( \varepsilon \)-martensite phase that occurs is an intermediate phase that can occur during the \( \gamma \to \alpha ^{\prime} \) transformation, though it is relatively stable during deformation.[10,35,36]
 
2
Comparison is made using the mean of the three \( {\text{MA}}_{\text{H}} \) samples and the single \( {\text{MA}}_{\text{CR - H}} \) sample with an equivalent time between H charging and mechanical testing, although the other \( {\text{MA}}_{\text{CR - H}} \) samples had similar mechanical properties.
 
3
It was not possible to quantify this point due to inconsistencies of the voids introduced during different sample preparation. Nevertheless, there were no observations of the void clusters after observing several 20×20 m high resolution ECC images containing a large number of grains (on the order of ten thousand).
 
Literatur
1.
Zurück zum Zitat 1 G. Yagawa, Y. Kanto, S. Yoshimura, H. Machida, and K. Shibata: Nucl. Eng. Des., 2001, vol. 207, pp. 269–86.CrossRef 1 G. Yagawa, Y. Kanto, S. Yoshimura, H. Machida, and K. Shibata: Nucl. Eng. Des., 2001, vol. 207, pp. 269–86.CrossRef
2.
Zurück zum Zitat J. Pierre, R. Francois, and P. Christophe: in Proceedings of the ASME 2013 Pressure Vessels and Piping Conference, Paris, 2013, pp. 1–8. J. Pierre, R. Francois, and P. Christophe: in Proceedings of the ASME 2013 Pressure Vessels and Piping Conference, Paris, 2013, pp. 1–8.
3.
Zurück zum Zitat 3 G. Lovicu, M. Bottazzi, F.D. Aiuto, M.D.E. Sanctis, A. Dimatteo, and C. Santus: Meallurgical Mater. Trans. A, 2012, vol. 43, pp. 4075–87.CrossRef 3 G. Lovicu, M. Bottazzi, F.D. Aiuto, M.D.E. Sanctis, A. Dimatteo, and C. Santus: Meallurgical Mater. Trans. A, 2012, vol. 43, pp. 4075–87.CrossRef
4.
Zurück zum Zitat 4 M. Loidl, O. Kolk, S. Veith, and T. Göbel: Materwiss. Werksttech., 2011, vol. 42, pp. 1105–10.CrossRef 4 M. Loidl, O. Kolk, S. Veith, and T. Göbel: Materwiss. Werksttech., 2011, vol. 42, pp. 1105–10.CrossRef
5.
Zurück zum Zitat 5 J. Capelle, J. Gilgert, I. Dmytrakh, and G. Pluvinage: Int. J. Hydrogen Energy, 2008, vol. 33, pp. 7630–41.CrossRef 5 J. Capelle, J. Gilgert, I. Dmytrakh, and G. Pluvinage: Int. J. Hydrogen Energy, 2008, vol. 33, pp. 7630–41.CrossRef
6.
Zurück zum Zitat 6 M. Perrin, L. Gaillet, C. Tessier, and H. Idrissi: Corros. Sci., 2010, vol. 52, pp. 1915–26.CrossRef 6 M. Perrin, L. Gaillet, C. Tessier, and H. Idrissi: Corros. Sci., 2010, vol. 52, pp. 1915–26.CrossRef
7.
Zurück zum Zitat 7 M. Koyama, E. Akiyama, K. Tsuzaki, and D. Raabe: Acta Mater., 2013, vol. 61, pp. 4607–18.CrossRef 7 M. Koyama, E. Akiyama, K. Tsuzaki, and D. Raabe: Acta Mater., 2013, vol. 61, pp. 4607–18.CrossRef
8.
Zurück zum Zitat 8 M. Koyama, C.C. Tasan, E. Akiyama, K. Tsuzaki, and D. Raabe: Acta Mater., 2014, vol. 70, pp. 174–87.CrossRef 8 M. Koyama, C.C. Tasan, E. Akiyama, K. Tsuzaki, and D. Raabe: Acta Mater., 2014, vol. 70, pp. 174–87.CrossRef
9.
Zurück zum Zitat R.A. McCoy and W.W. Gerberich: Metall. Trans., 1973, vol. 4, pp. 539–47.CrossRef R.A. McCoy and W.W. Gerberich: Metall. Trans., 1973, vol. 4, pp. 539–47.CrossRef
10.
Zurück zum Zitat 10 M.M. Wang, C.C. Tasan, D. Ponge, A. Kostka, and D. Raabe: Acta Mater., 2014, vol. 79, pp. 268–81.CrossRef 10 M.M. Wang, C.C. Tasan, D. Ponge, A. Kostka, and D. Raabe: Acta Mater., 2014, vol. 79, pp. 268–81.CrossRef
11.
Zurück zum Zitat 11 M.M. Wang, C.C. Tasan, D. Ponge, and D. Raabe: Acta Mater., 2016, vol. 111, pp. 262–72.CrossRef 11 M.M. Wang, C.C. Tasan, D. Ponge, and D. Raabe: Acta Mater., 2016, vol. 111, pp. 262–72.CrossRef
12.
Zurück zum Zitat 12 M. Koyama, Z. Zhang, M. Wang, D. Ponge, D. Raabe, K. Tsuzaki, H. Noguchi, and C.C. Tasan: Science., 2017, vol. 355, pp. 1055–7.CrossRef 12 M. Koyama, Z. Zhang, M. Wang, D. Ponge, D. Raabe, K. Tsuzaki, H. Noguchi, and C.C. Tasan: Science., 2017, vol. 355, pp. 1055–7.CrossRef
13.
Zurück zum Zitat R.A. McCoy, W.W. Gerberich, and V.F. Zackay: Metall. Trans., 1970, vol. 1, pp. 2031–34.CrossRef R.A. McCoy, W.W. Gerberich, and V.F. Zackay: Metall. Trans., 1970, vol. 1, pp. 2031–34.CrossRef
14.
Zurück zum Zitat Y.D. Park, I.S. Maroef, A. Landau, and D.L. Olson: Weld. Res., 2002, pp. 27–35. Y.D. Park, I.S. Maroef, A. Landau, and D.L. Olson: Weld. Res., 2002, pp. 27–35.
15.
Zurück zum Zitat 15 M.M. Wang, C.C. Tasan, D. Ponge, A.C. Dippel, and D. Raabe: Acta Mater., 2015, vol. 85, pp. 216–28.CrossRef 15 M.M. Wang, C.C. Tasan, D. Ponge, A.C. Dippel, and D. Raabe: Acta Mater., 2015, vol. 85, pp. 216–28.CrossRef
16.
Zurück zum Zitat M. Wang, C.C. Tasan, M. Koyama, D. Ponge, and D. Raabe: Metall. Mater. Trans. A, 2015, vol. 46A. M. Wang, C.C. Tasan, M. Koyama, D. Ponge, and D. Raabe: Metall. Mater. Trans. A, 2015, vol. 46A.
17.
Zurück zum Zitat 17 J.Y. Lee and S.M. Lee: Surf. Coatings Technol., 1986, vol. 28, pp. 301–14.CrossRef 17 J.Y. Lee and S.M. Lee: Surf. Coatings Technol., 1986, vol. 28, pp. 301–14.CrossRef
18.
Zurück zum Zitat 18 K.G. Solheim, J.K. Solberg, J. Walmsley, F. Rosenqvist, and T.H. Bjørnå: Eng. Fail. Anal., 2013, vol. 34, pp. 140–9.CrossRef 18 K.G. Solheim, J.K. Solberg, J. Walmsley, F. Rosenqvist, and T.H. Bjørnå: Eng. Fail. Anal., 2013, vol. 34, pp. 140–9.CrossRef
19.
Zurück zum Zitat 19 J.H. Ryu, Y.S. Chun, C.S. Lee, H.K.D.H. Bhadeshia, and D.W. Suh: Acta Mater., 2012, vol. 60, pp. 4085–92.CrossRef 19 J.H. Ryu, Y.S. Chun, C.S. Lee, H.K.D.H. Bhadeshia, and D.W. Suh: Acta Mater., 2012, vol. 60, pp. 4085–92.CrossRef
20.
Zurück zum Zitat 20 J. Han, J.H. Nam, and Y.K. Lee: Acta Mater., 2016, vol. 113, pp. 1–10.CrossRef 20 J. Han, J.H. Nam, and Y.K. Lee: Acta Mater., 2016, vol. 113, pp. 1–10.CrossRef
21.
Zurück zum Zitat 21 G. Frommeyer, U. Brüx, and P. Neumann: ISIJ Int., 2003, vol. 43, pp. 438–46.CrossRef 21 G. Frommeyer, U. Brüx, and P. Neumann: ISIJ Int., 2003, vol. 43, pp. 438–46.CrossRef
22.
Zurück zum Zitat E. De Moor, S. Lacroix, A.J. Clarke, J. Penning, and J.G. Speer: Metall. Mater. Trans. A, 2008, vol. 39, p. 2586.CrossRef E. De Moor, S. Lacroix, A.J. Clarke, J. Penning, and J.G. Speer: Metall. Mater. Trans. A, 2008, vol. 39, p. 2586.CrossRef
23.
Zurück zum Zitat 23 T. Michler, C. San Marchi, J. Naumann, S. Weber, and M. Martin: Int. J. Hydrogen Energy, 2012, vol. 37, pp. 16231–46.CrossRef 23 T. Michler, C. San Marchi, J. Naumann, S. Weber, and M. Martin: Int. J. Hydrogen Energy, 2012, vol. 37, pp. 16231–46.CrossRef
24.
Zurück zum Zitat 24 J. Sojka, V. Vodárek, I. Schindler, C. Ly, M. Jérôme, P. Váňová, N. Ruscassier, and A. Wenglorzová: Corros. Sci., 2011, vol. 53, pp. 2575–81.CrossRef 24 J. Sojka, V. Vodárek, I. Schindler, C. Ly, M. Jérôme, P. Váňová, N. Ruscassier, and A. Wenglorzová: Corros. Sci., 2011, vol. 53, pp. 2575–81.CrossRef
25.
27.
Zurück zum Zitat 27 M. Nagumo: Fundamentals of Hydrogen Embrittlement, Springer, Singapore, 2016.CrossRef 27 M. Nagumo: Fundamentals of Hydrogen Embrittlement, Springer, Singapore, 2016.CrossRef
28.
Zurück zum Zitat 28 J. Blaber, B. Adair, and A. Antoniou: Exp. Mech., 2015, vol. 55, pp. 1105–22.CrossRef 28 J. Blaber, B. Adair, and A. Antoniou: Exp. Mech., 2015, vol. 55, pp. 1105–22.CrossRef
29.
Zurück zum Zitat 29 A. Nagao, C.D. Smith, M. Dadfarnia, P. Sofronis, and I.M. Robertson: Acta Mater., 2012, vol. 60, pp. 5182–9.CrossRef 29 A. Nagao, C.D. Smith, M. Dadfarnia, P. Sofronis, and I.M. Robertson: Acta Mater., 2012, vol. 60, pp. 5182–9.CrossRef
30.
Zurück zum Zitat 30 M.L. Martin, B.P. Somerday, R.O. Ritchie, P. Sofronis, and I.M. Robertson: Acta Mater., 2012, vol. 60, pp. 2739–45.CrossRef 30 M.L. Martin, B.P. Somerday, R.O. Ritchie, P. Sofronis, and I.M. Robertson: Acta Mater., 2012, vol. 60, pp. 2739–45.CrossRef
31.
Zurück zum Zitat 31 J.L. Zhang, C.C. Tasan, M.L. Lai, J. Zhang, and D. Raabe: J. Mater. Sci., 2015, vol. 50, pp. 5694–708.CrossRef 31 J.L. Zhang, C.C. Tasan, M.L. Lai, J. Zhang, and D. Raabe: J. Mater. Sci., 2015, vol. 50, pp. 5694–708.CrossRef
32.
Zurück zum Zitat 32 R. Ueji, N. Tsuji, Y. Minamino, and Y. Koizumi: Sci. Technol. Adv. Mater., 2004, vol. 5, pp. 153–62.CrossRef 32 R. Ueji, N. Tsuji, Y. Minamino, and Y. Koizumi: Sci. Technol. Adv. Mater., 2004, vol. 5, pp. 153–62.CrossRef
33.
Zurück zum Zitat 33 X. Zhu, W. Li, H. Zhao, L. Wang, and X. Jin: Int. J. Hydrogen Energy, 2014, vol. 39, pp. 13031–40.CrossRef 33 X. Zhu, W. Li, H. Zhao, L. Wang, and X. Jin: Int. J. Hydrogen Energy, 2014, vol. 39, pp. 13031–40.CrossRef
34.
Zurück zum Zitat 34 A.A. Griffith: Philos. Trans. R. Soc. london. Ser. A, 1921, vol. 221, pp. 163–98.CrossRef 34 A.A. Griffith: Philos. Trans. R. Soc. london. Ser. A, 1921, vol. 221, pp. 163–98.CrossRef
35.
Zurück zum Zitat 35 Y.S. Chun, J.S. Kim, K.T. Park, Y.K. Lee, and C.S. Lee: Mater. Sci. Eng. A, 2012, vol. 533, pp. 87–95.CrossRef 35 Y.S. Chun, J.S. Kim, K.T. Park, Y.K. Lee, and C.S. Lee: Mater. Sci. Eng. A, 2012, vol. 533, pp. 87–95.CrossRef
36.
Zurück zum Zitat 36 T.H. Lee, E. Shin, C.S. Oh, H.Y. Ha, and S.J. Kim: Acta Mater., 2010, vol. 58, pp. 3173–86.CrossRef 36 T.H. Lee, E. Shin, C.S. Oh, H.Y. Ha, and S.J. Kim: Acta Mater., 2010, vol. 58, pp. 3173–86.CrossRef
Metadaten
Titel
Phase Stability Effects on Hydrogen Embrittlement Resistance in Martensite–Reverted Austenite Steels
verfasst von
B. C. Cameron
M. Koyama
C. C. Tasan
Publikationsdatum
05.11.2018
Verlag
Springer US
Erschienen in
Metallurgical and Materials Transactions A / Ausgabe 1/2019
Print ISSN: 1073-5623
Elektronische ISSN: 1543-1940
DOI
https://doi.org/10.1007/s11661-018-4948-x

Weitere Artikel der Ausgabe 1/2019

Metallurgical and Materials Transactions A 1/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.