Skip to main content
Erschienen in: Metallurgical and Materials Transactions A 1/2019

24.10.2018

Effect of Strain Rate and Temperature on the Tensile Flow Behavior and Microstructure Evolution in Fe-0.3 Pct C-CrMoV Grade Steel

verfasst von: G. Dilip Chandra Kumar, V. Anil Kumar, R. K. Gupta, S. V. S. Narayana Murty, B. P. Kashyap

Erschienen in: Metallurgical and Materials Transactions A | Ausgabe 1/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The effect of temperature and strain rate on the tensile flow behavior of Fe-0.3 pct C-CrMoV grade steel was studied over a wide range of strain rates (10−4 to 10−1 s−1) and temperatures (700 °C to 950 °C). The flow curves of the steel showed typical dynamic recovery (DRV)-type characteristics at low temperature, high strain rate, and dynamic recrystallization (DRX) type at high temperature > 775 °C. Stress regimes with stress exponent (n) of 3.6 to 5.5 for low–high stresses were observed. The ‘n’ values at temperatures of 850 °C and 900 °C were found to be > 4, which correspond to dislocation climb as the rate controlling mechanism. At 950 °C, ‘n’ value was found to be < 4, where viscous glide is the rate controlling mechanism. The apparent activation energy (Q) was found to be 320 ± 12 kJ mol−1. Hence, the dominant high-temperature deformation mechanism was identified as high-temperature climb of edge dislocations. The strain rate sensitivity index (m) of the steel was evaluated using jump strain rate tests and cyclic temperature and strain rate jump tests over temperatures of 700 °C to 950 °C and strain rates of 10−4 to 10−3 s−1 . Although, ‘m’ value as high as 0.5 was observed, cavitation resulted in premature failure during deformation resulting in low elongation. The volume fraction of cavities was inversely proportional to the strain rate at all temperatures. The fine-grained microstructure aids grain boundary sliding, and diffusion thereby favors the cavity growth at low strain rates. Microstructures evolved during the high-temperature tensile tests were analyzed and the optimum conditions for hot deformation i.e., hot rolling/hot forming schedules were determined as the temperature range of 850 °C to 950 °C and strain rate range of 10−3 to 10−4 s−1. The flow stress data for the steel were found to follow the universal Dorn sine hyperbolic equation.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat T.V. Philip and T.J. McCaffy: Metals Handbook, vol. 1, 10th ed., ASM International, Materials Park, OH, 1990, pp. 20–24. T.V. Philip and T.J. McCaffy: Metals Handbook, vol. 1, 10th ed., ASM International, Materials Park, OH, 1990, pp. 20–24.
2.
Zurück zum Zitat K. Sreekumar, M. S. P. Murthy, A. Natarajan, P. P. Sinha, and K. V. Nagarajan: Trans. Ind. Inst. Met., 1982, vol. 35, pp. 349–55. K. Sreekumar, M. S. P. Murthy, A. Natarajan, P. P. Sinha, and K. V. Nagarajan: Trans. Ind. Inst. Met., 1982, vol. 35, pp. 349–55.
3.
Zurück zum Zitat G. M. Padki, M. S. N. Balasubramanian, K. M. Gupta, and P. K. Rao: Ironmaking and Steelmaking, 1983, vol. 10, pp.180–85. G. M. Padki, M. S. N. Balasubramanian, K. M. Gupta, and P. K. Rao: Ironmaking and Steelmaking, 1983, vol. 10, pp.180–85.
4.
Zurück zum Zitat M. Chatterjee, M. S. N. Balasubramanian, K. M. Gupta, and P.K. Rao: Ironmaking and Steelmaking, 1990, vol. 17, pp. 38–42. M. Chatterjee, M. S. N. Balasubramanian, K. M. Gupta, and P.K. Rao: Ironmaking and Steelmaking, 1990, vol. 17, pp. 38–42.
5.
Zurück zum Zitat K. Saravanan, R. Suresh Kumar, V.M.J. Sharma, D. Sivakumar, P. Ramkumar, P. Ramesh Narayanan, K. Sreekumar and P.P. Sinha: Mater. Sci. Forum, 2012, vol. 710, pp. 433–38. K. Saravanan, R. Suresh Kumar, V.M.J. Sharma, D. Sivakumar, P. Ramkumar, P. Ramesh Narayanan, K. Sreekumar and P.P. Sinha: Mater. Sci. Forum, 2012, vol. 710, pp. 433–38.
6.
Zurück zum Zitat S. K. Maity, N. B. Ballal and R. Kawalla: The Iron and Steel Institute of Japan International, 2006, vol. 46, pp. 1361-70.CrossRef S. K. Maity, N. B. Ballal and R. Kawalla: The Iron and Steel Institute of Japan International, 2006, vol. 46, pp. 1361-70.CrossRef
7.
Zurück zum Zitat S. K. Maity, N. B. Ballal, R. Kawalla and G. Goldhahn: The Iron and Steel Institute of Japan International, 2008, vol. 49, pp. 902-10.CrossRef S. K. Maity, N. B. Ballal, R. Kawalla and G. Goldhahn: The Iron and Steel Institute of Japan International, 2008, vol. 49, pp. 902-10.CrossRef
8.
Zurück zum Zitat M.R. Suresh: Development of a new ultrahigh strength steel and studies of its microstructure and properties, Ph.D. Thesis, Department of Metallurgical Engineering and Material Science, IIT Bombay, India, 2002. M.R. Suresh: Development of a new ultrahigh strength steel and studies of its microstructure and properties, Ph.D. Thesis, Department of Metallurgical Engineering and Material Science, IIT Bombay, India, 2002.
9.
10.
Zurück zum Zitat M. R. Suresh, I. Samajdar, A. Ingle, N. B. Ballal, P. K. Rao and P. P. Sinha: Ironmaking and Steelmaking, 2003, vol. 30, pp. 379-86.CrossRef M. R. Suresh, I. Samajdar, A. Ingle, N. B. Ballal, P. K. Rao and P. P. Sinha: Ironmaking and Steelmaking, 2003, vol. 30, pp. 379-86.CrossRef
11.
Zurück zum Zitat T.R. Bandyopadhyay: Ultrahigh strength steel development using electroslag refining with inoculation, Ph.D. Thesis, Department of Metallurgical Engineering and Material Science, IIT Bombay, India, 2006. T.R. Bandyopadhyay: Ultrahigh strength steel development using electroslag refining with inoculation, Ph.D. Thesis, Department of Metallurgical Engineering and Material Science, IIT Bombay, India, 2006.
13.
Zurück zum Zitat T. R Bandyopadhyay, P. K. Rao and N. Prabhu: Ironmaking and Steelmaking, 2006, vol. 33, pp. 331-36.CrossRef T. R Bandyopadhyay, P. K. Rao and N. Prabhu: Ironmaking and Steelmaking, 2006, vol. 33, pp. 331-36.CrossRef
14.
Zurück zum Zitat T. Gladman: The physical Metallurgy of microalloyed steels, 1st Ed., Institute of Matetrials, The University Press, London, 1997, pp. 28-34. T. Gladman: The physical Metallurgy of microalloyed steels, 1st Ed., Institute of Matetrials, The University Press, London, 1997, pp. 28-34.
15.
Zurück zum Zitat F.B. Pickering and T. Gladman: ISI Special Report, pp. 81–83, 1961. F.B. Pickering and T. Gladman: ISI Special Report, pp. 81–83, 1961.
16.
Zurück zum Zitat S. K. Mishra, S. Das and S. Ranganathan: Mater. Sci. Eng. A., 2002, vol. 323, pp. 285–90.CrossRef S. K. Mishra, S. Das and S. Ranganathan: Mater. Sci. Eng. A., 2002, vol. 323, pp. 285–90.CrossRef
18.
Zurück zum Zitat M.R. Suresh, P.P. Sinha, D.S. Sarma, N.B. Ballal and P. Krishna Rao: J. Mater. Sci., 2007, vol. 42, pp. 5602–12. M.R. Suresh, P.P. Sinha, D.S. Sarma, N.B. Ballal and P. Krishna Rao: J. Mater. Sci., 2007, vol. 42, pp. 5602–12.
19.
Zurück zum Zitat S. Alsagabi, T. Shrestha and I. Charit: J. Nucl. Mater., 2014, vol. 453 pp. 151–7.CrossRef S. Alsagabi, T. Shrestha and I. Charit: J. Nucl. Mater., 2014, vol. 453 pp. 151–7.CrossRef
20.
Zurück zum Zitat Y. C. Huang, Y. C. Lin, J. Deng, G. Liu, M. S. Chen: Mater. Des., 2014, vol. 53, pp. 349-56.CrossRef Y. C. Huang, Y. C. Lin, J. Deng, G. Liu, M. S. Chen: Mater. Des., 2014, vol. 53, pp. 349-56.CrossRef
21.
Zurück zum Zitat A. K. Mukerjee, J. E. Bird and J. E. Dorn: Trans. ASM, 1969, vol. 62, pp.155-79. A. K. Mukerjee, J. E. Bird and J. E. Dorn: Trans. ASM, 1969, vol. 62, pp.155-79.
22.
Zurück zum Zitat H. J Frost and M. F. Ashby: Deformation mechanism maps, The plasticity and creep of metals and ceramics, 1st Ed., Pergoman press, Oxford, UK, 1982, pp. 1-11. H. J Frost and M. F. Ashby: Deformation mechanism maps, The plasticity and creep of metals and ceramics, 1st Ed., Pergoman press, Oxford, UK, 1982, pp. 1-11.
23.
Zurück zum Zitat C. M. Sellars and W.T. M. Tegart: Int. Metal. Rev., 1972, vol. 17, pp. 1-24.CrossRef C. M. Sellars and W.T. M. Tegart: Int. Metal. Rev., 1972, vol. 17, pp. 1-24.CrossRef
24.
Zurück zum Zitat B.P. Kashyap and A.K. Mukherjee: Res. Mechanica., 1986, vol. 17, pp. 293-355. B.P. Kashyap and A.K. Mukherjee: Res. Mechanica., 1986, vol. 17, pp. 293-355.
26.
Zurück zum Zitat N. Ridley and Z.C. Wang: Mater. Sci. For., 1994, vol. 170-172, pp. 177-86.CrossRef N. Ridley and Z.C. Wang: Mater. Sci. For., 1994, vol. 170-172, pp. 177-86.CrossRef
27.
Zurück zum Zitat N. Ridley and Z.C. Wang: Mater. Sci. For., 1997, vol. 233-234, pp. 63-80. N. Ridley and Z.C. Wang: Mater. Sci. For., 1997, vol. 233-234, pp. 63-80.
28.
Zurück zum Zitat J.P. Speer, C.M. Enloe, K.O. Findley, C.J. Van Tyne and E.J. Pavlina, in Fundamentals and Applications of Mo and Nb Alloying in High Performance Steels, vol. 2, TMS, UK, 2015, pp. 85–98. J.P. Speer, C.M. Enloe, K.O. Findley, C.J. Van Tyne and E.J. Pavlina, in Fundamentals and Applications of Mo and Nb Alloying in High Performance Steels, vol. 2, TMS, UK, 2015, pp. 85–98.
29.
Zurück zum Zitat R. Okamoto, A. Borgenstam and J. Argen: Acta Mater., 2010, vol. 58, pp. 4783-90.CrossRef R. Okamoto, A. Borgenstam and J. Argen: Acta Mater., 2010, vol. 58, pp. 4783-90.CrossRef
30.
31.
Zurück zum Zitat P. Gong, E.J. Palmiere and W.M. Rainforth: Acta Mater., 2015, vol. 97, pp.392-403.CrossRef P. Gong, E.J. Palmiere and W.M. Rainforth: Acta Mater., 2015, vol. 97, pp.392-403.CrossRef
32.
Zurück zum Zitat R. Schwaiger, B. Moser, M. Dao, N. Chollacoop and S. Suresh: Acta Mater., 2003, vol. 51, pp.5159-72.CrossRef R. Schwaiger, B. Moser, M. Dao, N. Chollacoop and S. Suresh: Acta Mater., 2003, vol. 51, pp.5159-72.CrossRef
33.
Zurück zum Zitat Y. Maehara and T. G. Langdon: Mater. Sci. Eng. A., 1990, vol. 128, pp. 1-13.CrossRef Y. Maehara and T. G. Langdon: Mater. Sci. Eng. A., 1990, vol. 128, pp. 1-13.CrossRef
Metadaten
Titel
Effect of Strain Rate and Temperature on the Tensile Flow Behavior and Microstructure Evolution in Fe-0.3 Pct C-CrMoV Grade Steel
verfasst von
G. Dilip Chandra Kumar
V. Anil Kumar
R. K. Gupta
S. V. S. Narayana Murty
B. P. Kashyap
Publikationsdatum
24.10.2018
Verlag
Springer US
Erschienen in
Metallurgical and Materials Transactions A / Ausgabe 1/2019
Print ISSN: 1073-5623
Elektronische ISSN: 1543-1940
DOI
https://doi.org/10.1007/s11661-018-4963-y

Weitere Artikel der Ausgabe 1/2019

Metallurgical and Materials Transactions A 1/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.