Skip to main content
Top
Published in: Acta Mechanica 6/2020

01-04-2020 | Original Paper

Phenomena and mechanism of molten copper column interaction with water

Authors: Jingge Song, Changjian Wang, Bing Chen, Manhou Li, Zhihe Shen, Chenxi Wang

Published in: Acta Mechanica | Issue 6/2020

Login to get access

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The steam explosion accidents frequently occur in the metallurgical industry, causing significant personal injury and property damage. In this paper, the experiments on the interaction of a molten copper column with water were carried out under different temperatures and masses of the molten copper column. Five fragmentation phenomena of the copper column can be observed. The fragmentation probability is significantly large when the temperature of molten copper falls in the range of 1200–\(1400\,^{\circ }\hbox {C}\). As the mass of molten copper increases, the fragmentation probability of the copper column in water decreases, while the fragmentation probability at the vessel bottom increases. Two fragmentation models are proposed based upon the morphological structures of molten copper and fluid instability. The instability is the main reason for the fragmentation of the copper column with the streamline structure, while the rapid evaporation of cooling water inside the concave structure is the dominant mechanism for the fragmentation of a copper column with a concave structure.
Literature
1.
go back to reference Katz, D., Sliepcevich, C.: LNG/water explosions: cause & effect. Hydrocarb. Process. 50, 240–244 (1971) Katz, D., Sliepcevich, C.: LNG/water explosions: cause & effect. Hydrocarb. Process. 50, 240–244 (1971)
2.
go back to reference The explosion at the Appleby-Frodingham steelworks. Health and Safety Executive Report (1975) The explosion at the Appleby-Frodingham steelworks. Health and Safety Executive Report (1975)
3.
go back to reference Corradini, M.L., Kim, B.J., Oh, M.D.: Vapor explosions in light water reactors: a review of theory and modeling. Prog. Nucl. Energy 22, 1–117 (1988)CrossRef Corradini, M.L., Kim, B.J., Oh, M.D.: Vapor explosions in light water reactors: a review of theory and modeling. Prog. Nucl. Energy 22, 1–117 (1988)CrossRef
4.
go back to reference Fletcher, D.F., Anderson, R.P.: A review of pressure-induced propagation models of the vapour explosion process. Prog. Nucl. Energy 23, 137–179 (1990)CrossRef Fletcher, D.F., Anderson, R.P.: A review of pressure-induced propagation models of the vapour explosion process. Prog. Nucl. Energy 23, 137–179 (1990)CrossRef
5.
go back to reference Berthoud, G.: Vapor explosions. Annu. Rev. Fluid Mech. 32, 573–611 (2000)CrossRef Berthoud, G.: Vapor explosions. Annu. Rev. Fluid Mech. 32, 573–611 (2000)CrossRef
6.
go back to reference Taleyarkhan, R.P.: Vapor explosion studies for nuclear and non-nuclear industries. Nucl. Eng. Des. 235, 1061–1077 (2005)CrossRef Taleyarkhan, R.P.: Vapor explosion studies for nuclear and non-nuclear industries. Nucl. Eng. Des. 235, 1061–1077 (2005)CrossRef
7.
go back to reference Magallon, D.: Status and prospects of resolution of the vapour explosion issue in light water reactors. Nucl. Eng. Technol. 41, 603–616 (2009)CrossRef Magallon, D.: Status and prospects of resolution of the vapour explosion issue in light water reactors. Nucl. Eng. Technol. 41, 603–616 (2009)CrossRef
8.
go back to reference Theofanous, T.G.: The study of steam explosions in nuclear systems. Nucl. Eng. Des. 155, 1–26 (1995)CrossRef Theofanous, T.G.: The study of steam explosions in nuclear systems. Nucl. Eng. Des. 155, 1–26 (1995)CrossRef
9.
go back to reference Theofanous, T.G., Yuen, W.W.: The probability of alpha-mode containment failure. Nucl. Eng. Des. 155, 459–473 (1995)CrossRef Theofanous, T.G., Yuen, W.W.: The probability of alpha-mode containment failure. Nucl. Eng. Des. 155, 459–473 (1995)CrossRef
10.
go back to reference Liang, G., Guo, Y., Yang, Y., Zhen, N., Shen, S.: Spreading and splashing during a single drop impact on an inclined wetted surface. Acta Mech. 224, 2993–3004 (2013)CrossRef Liang, G., Guo, Y., Yang, Y., Zhen, N., Shen, S.: Spreading and splashing during a single drop impact on an inclined wetted surface. Acta Mech. 224, 2993–3004 (2013)CrossRef
11.
go back to reference Liang, G., Shen, S., Mu, X.: Numerical analysis and insight of drop impacting dynamics upon a liquid film. Acta Mech. 228, 385–400 (2017)MathSciNetCrossRef Liang, G., Shen, S., Mu, X.: Numerical analysis and insight of drop impacting dynamics upon a liquid film. Acta Mech. 228, 385–400 (2017)MathSciNetCrossRef
12.
go back to reference Xu, M., Zhang, J., Wu, C., Li, C., Chen, X., Lu, S.: Collision dynamics of a single water droplet impinging on a high-temperature pool of oil. Acta Mech. 229, 1567–1577 (2018)CrossRef Xu, M., Zhang, J., Wu, C., Li, C., Chen, X., Lu, S.: Collision dynamics of a single water droplet impinging on a high-temperature pool of oil. Acta Mech. 229, 1567–1577 (2018)CrossRef
13.
go back to reference Liang, G., Guo, Y., Shen, S., Yu, H.: A study of a single liquid drop impact on inclined wetted surfaces. Acta Mech. 225, 3353–3363 (2014)CrossRef Liang, G., Guo, Y., Shen, S., Yu, H.: A study of a single liquid drop impact on inclined wetted surfaces. Acta Mech. 225, 3353–3363 (2014)CrossRef
14.
go back to reference Liang, G., Zhang, T., Yu, H., Chen, H., Shen, S.: Interaction between liquid drop with low impact momentum and heated wall. Acta Mech. 229, 4459–4470 (2018)CrossRef Liang, G., Zhang, T., Yu, H., Chen, H., Shen, S.: Interaction between liquid drop with low impact momentum and heated wall. Acta Mech. 229, 4459–4470 (2018)CrossRef
15.
go back to reference Liang, G., Yu, H., Chen, L., Shen, S.: Interfacial phenomena in impact of droplet array on solid wall. Acta Mech. 231, 305–319 (2019)CrossRef Liang, G., Yu, H., Chen, L., Shen, S.: Interfacial phenomena in impact of droplet array on solid wall. Acta Mech. 231, 305–319 (2019)CrossRef
16.
go back to reference Fetecău, C., Petrescu, S.: Heat transfer at thin molten layer crystallization I. Molten layer cooling stage. Acta Mech. 108, 225–231 (1995)CrossRef Fetecău, C., Petrescu, S.: Heat transfer at thin molten layer crystallization I. Molten layer cooling stage. Acta Mech. 108, 225–231 (1995)CrossRef
17.
go back to reference Hansson, R.: An experimental study on the dynamics of a single droplet vapor explosion. Ph.D. thesis, Royal Institute of Technology, Stockholm (2010) Hansson, R.: An experimental study on the dynamics of a single droplet vapor explosion. Ph.D. thesis, Royal Institute of Technology, Stockholm (2010)
18.
go back to reference Lin, Q., Tong, L., Cao, X., Kriventsev, V.: Experiment on fragmentation of melt drop interacted with water. Nucl. Power Eng. 30, 31–35 (2009) Lin, Q., Tong, L., Cao, X., Kriventsev, V.: Experiment on fragmentation of melt drop interacted with water. Nucl. Power Eng. 30, 31–35 (2009)
19.
go back to reference Lin, M., Zhou, Y., Zhong, M., Yan, X., Yang, Y.: Molten metal and water direct contact interaction research-II. Numerical analysis. Ann. Nucl. Energy 70, 256–265 (2014)CrossRef Lin, M., Zhou, Y., Zhong, M., Yan, X., Yang, Y.: Molten metal and water direct contact interaction research-II. Numerical analysis. Ann. Nucl. Energy 70, 256–265 (2014)CrossRef
20.
go back to reference Thakre, S., Ma, W., Li, L.: A numerical analysis on hydrodynamic deformation of molten droplets in a water pool. Ann. Nucl. Energy 53, 228–237 (2013)CrossRef Thakre, S., Ma, W., Li, L.: A numerical analysis on hydrodynamic deformation of molten droplets in a water pool. Ann. Nucl. Energy 53, 228–237 (2013)CrossRef
21.
go back to reference Zhou, Y., Lin, M., Zhong, M., Yan, X., Yang, Y.: Molten metal and water direct contact interaction research-I. Photographic experiment study. Ann. Nucl. Energy 70, 248–255 (2014)CrossRef Zhou, Y., Lin, M., Zhong, M., Yan, X., Yang, Y.: Molten metal and water direct contact interaction research-I. Photographic experiment study. Ann. Nucl. Energy 70, 248–255 (2014)CrossRef
22.
go back to reference Li, L.X., Li, H.X., Chen, T.K., Ma, W.M.: Experimental investigation on the dynamic characteristics of molten droplets and high-temperature particles falling in coolant. AIP Conf. Proc. 1207, 292–299 (2010)CrossRef Li, L.X., Li, H.X., Chen, T.K., Ma, W.M.: Experimental investigation on the dynamic characteristics of molten droplets and high-temperature particles falling in coolant. AIP Conf. Proc. 1207, 292–299 (2010)CrossRef
23.
go back to reference Zielinski, S.M., Sansone, A.A., Ziolkowski, M., Taleyarkhan, R.P.: Prevention and intensification of melt-water explosive interactions. J. Heat Transf. 133, 071201–071201 (2011)CrossRef Zielinski, S.M., Sansone, A.A., Ziolkowski, M., Taleyarkhan, R.P.: Prevention and intensification of melt-water explosive interactions. J. Heat Transf. 133, 071201–071201 (2011)CrossRef
24.
go back to reference Fröhlich, G., Müller, G., Unger, H.: Experiments with water and hot melts of lead. J. Non Equilib. Thermodyn. 1, 91–104 (1976)CrossRef Fröhlich, G., Müller, G., Unger, H.: Experiments with water and hot melts of lead. J. Non Equilib. Thermodyn. 1, 91–104 (1976)CrossRef
25.
go back to reference Corradini, M.L.: Phenomenological modeling of the triggering phase of small-scale steam explosion experiments. Nucl. Sci. Eng. 78, 154–170 (1981)CrossRef Corradini, M.L.: Phenomenological modeling of the triggering phase of small-scale steam explosion experiments. Nucl. Sci. Eng. 78, 154–170 (1981)CrossRef
26.
go back to reference Nelson, L.S., Duda, P.M., Frohlich, G., Anderle, M.: Photographic evidence for the mechanism of fragmentation of a single drop of melt in triggered steam explosion experiments. J. Non Equilib. Thermodyn. 13, 27–55 (1988)CrossRef Nelson, L.S., Duda, P.M., Frohlich, G., Anderle, M.: Photographic evidence for the mechanism of fragmentation of a single drop of melt in triggered steam explosion experiments. J. Non Equilib. Thermodyn. 13, 27–55 (1988)CrossRef
27.
go back to reference Park, H.S., Hansson, R.C., Sehgal, B.R.: Fine fragmentation of molten droplet in highly subcooled water due to vapor explosion observed by X-ray radiography. Exp. Therm. Fluid Sci. 29, 351–361 (2005)CrossRef Park, H.S., Hansson, R.C., Sehgal, B.R.: Fine fragmentation of molten droplet in highly subcooled water due to vapor explosion observed by X-ray radiography. Exp. Therm. Fluid Sci. 29, 351–361 (2005)CrossRef
28.
go back to reference Ivins, R.: Interactions of fuel, cladding and coolant, ANL-7399, pp. 162–165 (1967) Ivins, R.: Interactions of fuel, cladding and coolant, ANL-7399, pp. 162–165 (1967)
29.
go back to reference Kim, B., Corradini, M.L.: Modeling of small-scale single droplet fuel/coolant interactions. Nucl. Sci. Eng. 98, 16–28 (1988)CrossRef Kim, B., Corradini, M.L.: Modeling of small-scale single droplet fuel/coolant interactions. Nucl. Sci. Eng. 98, 16–28 (1988)CrossRef
30.
go back to reference Kolev, N.I.: Fragmentation and coalescence dynamics in multiphase flows. Exp. Therm. Fluid Sci. 6, 211–251 (1993)CrossRef Kolev, N.I.: Fragmentation and coalescence dynamics in multiphase flows. Exp. Therm. Fluid Sci. 6, 211–251 (1993)CrossRef
31.
go back to reference Inoue, A., Lee, S.: Proceedings of the OECD/CSNI Specialists Meeting on Fuel–Coolant Interactions. Tokai-Mura, Japan (1997) Inoue, A., Lee, S.: Proceedings of the OECD/CSNI Specialists Meeting on Fuel–Coolant Interactions. Tokai-Mura, Japan (1997)
32.
go back to reference Medhekar, S., Abolfadl, M., Theofanous, T.G.: Triggering and propagation of steam explosions. Nucl. Eng. Des. 126, 41–49 (1991)CrossRef Medhekar, S., Abolfadl, M., Theofanous, T.G.: Triggering and propagation of steam explosions. Nucl. Eng. Des. 126, 41–49 (1991)CrossRef
33.
go back to reference Hulin, H., Kolev, N.I.: Shock waves in multiphase flow of fuel–coolant interaction. Int. J. Therm. Sci. 39, 354–359 (2000)CrossRef Hulin, H., Kolev, N.I.: Shock waves in multiphase flow of fuel–coolant interaction. Int. J. Therm. Sci. 39, 354–359 (2000)CrossRef
34.
go back to reference Żyszkowski, W.: Thermal interaction of molten copper with water. Int. J. Heat Mass Transf. 18, 271–287 (1975)CrossRef Żyszkowski, W.: Thermal interaction of molten copper with water. Int. J. Heat Mass Transf. 18, 271–287 (1975)CrossRef
35.
go back to reference Żyszkowski, W.: On the transplosion phenomenon and the Leidenfrost temperature for the molten copper–water thermal interaction. Int. J. Heat Mass Transf. 19, 625–633 (1976)CrossRef Żyszkowski, W.: On the transplosion phenomenon and the Leidenfrost temperature for the molten copper–water thermal interaction. Int. J. Heat Mass Transf. 19, 625–633 (1976)CrossRef
36.
go back to reference Żyszkowski, W.: Study of the thermal explosion phenomenon in molten copper–water system. Int. J. Heat Mass Transf. 19, 849–868 (1976)CrossRef Żyszkowski, W.: Study of the thermal explosion phenomenon in molten copper–water system. Int. J. Heat Mass Transf. 19, 849–868 (1976)CrossRef
37.
go back to reference Page, F.: Base Triggered FCI in copper/water systems. In: Fourth CSNI Specialist Meeting on Fuel–Coolant Interaction in Nucl Reactor Safety Bournemouth, UK, pp. 2–5 (1979) Page, F.: Base Triggered FCI in copper/water systems. In: Fourth CSNI Specialist Meeting on Fuel–Coolant Interaction in Nucl Reactor Safety Bournemouth, UK, pp. 2–5 (1979)
38.
go back to reference Wang, C., Wang, C., Chen, B., Lin, D., Li, M., Shen, Z.: Comparative study of water droplet interactions with molten lead and tin. Eur. J. Mech. B Fluids 80, 157–166 (2020)CrossRef Wang, C., Wang, C., Chen, B., Lin, D., Li, M., Shen, Z.: Comparative study of water droplet interactions with molten lead and tin. Eur. J. Mech. B Fluids 80, 157–166 (2020)CrossRef
39.
go back to reference Brandes, E.A., Brook, G.B.: Smithells Metals Reference Book, 7th edn. Butterworth-Heinemann, Oxford (1992) Brandes, E.A., Brook, G.B.: Smithells Metals Reference Book, 7th edn. Butterworth-Heinemann, Oxford (1992)
40.
go back to reference Abe, Y., Kizu, T., Arai, T., Nariai, H., Chitose, K., Koyama, K.: Study on thermal-hydraulic behavior during molten material and coolant interaction. Nucl. Eng. Des. 230, 277–291 (2004)CrossRef Abe, Y., Kizu, T., Arai, T., Nariai, H., Chitose, K., Koyama, K.: Study on thermal-hydraulic behavior during molten material and coolant interaction. Nucl. Eng. Des. 230, 277–291 (2004)CrossRef
41.
go back to reference Taylor, G.I.: The instability of liquid surfaces when accelerated in a direction perpendicular to their planes. I. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 201, 192–196 (1950)MathSciNetMATH Taylor, G.I.: The instability of liquid surfaces when accelerated in a direction perpendicular to their planes. I. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 201, 192–196 (1950)MathSciNetMATH
42.
go back to reference Lamôme, J., Meignen, R.: Analysis of the thermal fragmentation as a mechanism for the initiation of steam explosion. In: Proceedings of International Congress on Advances in Nuclear Power Plants (ICAPP 7), Nice, France (2007) Lamôme, J., Meignen, R.: Analysis of the thermal fragmentation as a mechanism for the initiation of steam explosion. In: Proceedings of International Congress on Advances in Nuclear Power Plants (ICAPP 7), Nice, France (2007)
Metadata
Title
Phenomena and mechanism of molten copper column interaction with water
Authors
Jingge Song
Changjian Wang
Bing Chen
Manhou Li
Zhihe Shen
Chenxi Wang
Publication date
01-04-2020
Publisher
Springer Vienna
Published in
Acta Mechanica / Issue 6/2020
Print ISSN: 0001-5970
Electronic ISSN: 1619-6937
DOI
https://doi.org/10.1007/s00707-020-02667-x

Other articles of this Issue 6/2020

Acta Mechanica 6/2020 Go to the issue

Premium Partners