Skip to main content
Top
Published in: Journal of Engineering Mathematics 1/2016

05-11-2015

Phenomenological isotropic visco-hyperelasticity: a differential model based on fractional derivatives

Authors: Safia Bouzidi, Hocine Bechir, Fabrice Brémand

Published in: Journal of Engineering Mathematics | Issue 1/2016

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The rheological equation of a standard linear solid, i.e., the Zener model, is thermodynamically consistent. Thus, it was often used as a starting point for the development of nonlinear viscoelastic models, especially for elastomers. The basic idea of this paper is a generalization of the one-dimensional fractional constitutive equation of the Zener model to large strains. To reduce the number of material parameters of differential models based on the concept of the internal variables and to avoid integral constitutive equations, we develop a differential model based on the concept of dual stress and strain tensors and their derivatives. To this end, we select two couples of dual stress and strain tensors that have been used in finite elasticity. Then we obtain two constitutive models of incompressible isotropic materials called M1 and M2. We show that the M1 model is not suitable for describing the viscoelastic behavior of elastomers. To improve the predictions of the M2 model, we assume that the material is thixotropic. Therefore, the ratio of the relaxation and creep time depends on deformation. Experimental results show that this ratio may be represented as a function of the first invariant of the Cauchy–Green strain tensor. This yields a new constitutive equation whose material parameters were identified using experimental data on relaxation loadings in the literature. Next, we show that the model is able to predict the experimental data for combined loads of tension–torsion. Consequently, the model seems to be efficient at predicting the multiaxial visco-hyperelastic behavior of elastomers. The main advantage of the current model is that it has a differential form with relatively few parameters and is mathematically convenient.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Locket F-J (1972) Nonlinear viscoelastic solids. Academic Press, London, pp 59–188 Locket F-J (1972) Nonlinear viscoelastic solids. Academic Press, London, pp 59–188
2.
5.
go back to reference Holzapfel G-A, Simo J-C (1996) A new viscoelastic constitutive model for continuous media at finite thermomechanical changes. Int J Solids Struct 33:3019–3034CrossRefMATH Holzapfel G-A, Simo J-C (1996) A new viscoelastic constitutive model for continuous media at finite thermomechanical changes. Int J Solids Struct 33:3019–3034CrossRefMATH
6.
go back to reference Lianis G (1963) Constitutive equations of viscoelastic solids under finite deformation. AA ES Report 63-110. Purdue University Lianis G (1963) Constitutive equations of viscoelastic solids under finite deformation. AA ES Report 63-110. Purdue University
7.
go back to reference Goldberg W, Lianis G (1968) Behavior of viscoelastic media under small sinusoidal oscillations superposed on finite strain. J Appl Mech ASME 35(3):433–440CrossRef Goldberg W, Lianis G (1968) Behavior of viscoelastic media under small sinusoidal oscillations superposed on finite strain. J Appl Mech ASME 35(3):433–440CrossRef
8.
go back to reference Sullivan J-L, Morman K-N, Pett R-A (1980) A non-linear viscoelastic characterization of a natural rubber gum vulcanizate. Rubber Chem Technol 53:805–822CrossRef Sullivan J-L, Morman K-N, Pett R-A (1980) A non-linear viscoelastic characterization of a natural rubber gum vulcanizate. Rubber Chem Technol 53:805–822CrossRef
9.
go back to reference Morman K-N (1988) An adaptation of finite viscoelasticity theory for rubber-like viscoelasticity by use of a generalized strain measure. Rheol Acta 27:3–14CrossRefMATH Morman K-N (1988) An adaptation of finite viscoelasticity theory for rubber-like viscoelasticity by use of a generalized strain measure. Rheol Acta 27:3–14CrossRefMATH
10.
go back to reference Fosdick R-L, Yu J-H (1998) Thermodynamics, stability and non-linear oscillations of a viscoelastic solids—2. History type solids. Int J Non-Linear Mech 33(1):165–188MathSciNetCrossRefMATH Fosdick R-L, Yu J-H (1998) Thermodynamics, stability and non-linear oscillations of a viscoelastic solids—2. History type solids. Int J Non-Linear Mech 33(1):165–188MathSciNetCrossRefMATH
11.
go back to reference Pipkin A-C, Rogers T-G (1968) A non-linear integral representation for viscoelastic behaviour. J Mech Phys Solids 16(1):59–72ADSCrossRefMATH Pipkin A-C, Rogers T-G (1968) A non-linear integral representation for viscoelastic behaviour. J Mech Phys Solids 16(1):59–72ADSCrossRefMATH
12.
go back to reference Bernstein B, Kearlsey E-A, Zapas L-J (1963) A study of stress relaxation with finite-strain. Trans Soc Rheol 7:391–410CrossRefMATH Bernstein B, Kearlsey E-A, Zapas L-J (1963) A study of stress relaxation with finite-strain. Trans Soc Rheol 7:391–410CrossRefMATH
13.
go back to reference Petiteau J-C, Verrou E, Othman R, Le sourne H, Sigrist J-F, Barras G (2013) Large strain rate-dependent response of elastomers at different strain-rate: convolution integral vs. internal variable formulations. Mech Time-Depend Mater 17:349–367ADSCrossRef Petiteau J-C, Verrou E, Othman R, Le sourne H, Sigrist J-F, Barras G (2013) Large strain rate-dependent response of elastomers at different strain-rate: convolution integral vs. internal variable formulations. Mech Time-Depend Mater 17:349–367ADSCrossRef
14.
go back to reference Jaishankar A-J, McKinley G-H (2014) A fractional K-BKZ constitutive formulation for describing the nonlinear rheology of multiscale complex fluids. J Rheol 58(6):1751–1788ADSCrossRef Jaishankar A-J, McKinley G-H (2014) A fractional K-BKZ constitutive formulation for describing the nonlinear rheology of multiscale complex fluids. J Rheol 58(6):1751–1788ADSCrossRef
15.
go back to reference Chang W-V, Bloch R, Tschoegl N-W (1976) On the theory of the viscoelastic behavior of soft polymers in moderately large deformations. Rheol Acta 15:367–378CrossRefMATH Chang W-V, Bloch R, Tschoegl N-W (1976) On the theory of the viscoelastic behavior of soft polymers in moderately large deformations. Rheol Acta 15:367–378CrossRefMATH
16.
go back to reference Sullivan J-L (1987) A non-linear viscoelastic model for representing nonfactorizable time-dependent behavior in cured rubber. J Rheol 31(3):271–295ADSCrossRef Sullivan J-L (1987) A non-linear viscoelastic model for representing nonfactorizable time-dependent behavior in cured rubber. J Rheol 31(3):271–295ADSCrossRef
17.
go back to reference Fatt M-S Hoo, Ouyang X (2007) Integral-based constitutive equation for rubber at high strain rates. Int J Solids Struct 44:6491–6506CrossRefMATH Fatt M-S Hoo, Ouyang X (2007) Integral-based constitutive equation for rubber at high strain rates. Int J Solids Struct 44:6491–6506CrossRefMATH
18.
go back to reference Ciambella J, Paolone A, Vidoli S (2010) A comparison of nonlinear integral-based viscoelastic models through compression tests on filled rubber. Mech Mater 42:932–944CrossRef Ciambella J, Paolone A, Vidoli S (2010) A comparison of nonlinear integral-based viscoelastic models through compression tests on filled rubber. Mech Mater 42:932–944CrossRef
19.
go back to reference Christensen J-M (1980) A nonlinear theory of viscoelasticity for application to elastomers. J Appl Mech ASME 37:53–60MATH Christensen J-M (1980) A nonlinear theory of viscoelasticity for application to elastomers. J Appl Mech ASME 37:53–60MATH
20.
go back to reference O’Dowd N-P, Knauss W-G (1995) Time dependent large principal deformation of polymers. J Mech Phys Solids 43:771–792ADSCrossRefMATH O’Dowd N-P, Knauss W-G (1995) Time dependent large principal deformation of polymers. J Mech Phys Solids 43:771–792ADSCrossRefMATH
21.
go back to reference Rajagopal K-R, Srinivasa A-R (2013) An implicit thermomechanical theory based on a Gibbs potential formulation for describing the response of thermoviscoelastic solids. Int J Eng Sci 70:15–28CrossRef Rajagopal K-R, Srinivasa A-R (2013) An implicit thermomechanical theory based on a Gibbs potential formulation for describing the response of thermoviscoelastic solids. Int J Eng Sci 70:15–28CrossRef
22.
go back to reference Haj-Ali R-M, Muliana A-H (2004) Numerical finite element formulation of the Schapery non linear viscoelastic material model. Int J Numer Methods Eng 59(1):25–45CrossRefMATH Haj-Ali R-M, Muliana A-H (2004) Numerical finite element formulation of the Schapery non linear viscoelastic material model. Int J Numer Methods Eng 59(1):25–45CrossRefMATH
23.
go back to reference Tschoegl N-W (1989) The phenomenological theory of linear viscoelastic behaviour. Springer, HeildelbergCrossRefMATH Tschoegl N-W (1989) The phenomenological theory of linear viscoelastic behaviour. Springer, HeildelbergCrossRefMATH
24.
go back to reference Schiessel H, Blumen A (1993) Hierarchical analogues to fractional relaxation equations. J Phys Math Gen 26:5057–5069ADSCrossRef Schiessel H, Blumen A (1993) Hierarchical analogues to fractional relaxation equations. J Phys Math Gen 26:5057–5069ADSCrossRef
25.
go back to reference Sidoroff F (1975) Variables internes en viscolasticit II. Milieux avec configuration intermdiaire. J Méc 14(4):571–595MathSciNetMATH Sidoroff F (1975) Variables internes en viscolasticit II. Milieux avec configuration intermdiaire. J Méc 14(4):571–595MathSciNetMATH
26.
27.
go back to reference Ward I-M, Sweeney J (2004) An introduction to the mechanical properties of solid polymers. Wiley, New York Ward I-M, Sweeney J (2004) An introduction to the mechanical properties of solid polymers. Wiley, New York
28.
go back to reference Diani J, Brieu M, Gilormini P (2006) Observation and modeling of the anisotropic visco-hyperelastic behavior of a rubberlike material. Int J Solids Struct 43:3044–3056CrossRefMATH Diani J, Brieu M, Gilormini P (2006) Observation and modeling of the anisotropic visco-hyperelastic behavior of a rubberlike material. Int J Solids Struct 43:3044–3056CrossRefMATH
29.
go back to reference Lion A (2001) Thermomechanically consistent formulations of the standard linear solid using fractional derivatives. Arch Mech 53(3):253–273MATH Lion A (2001) Thermomechanically consistent formulations of the standard linear solid using fractional derivatives. Arch Mech 53(3):253–273MATH
30.
go back to reference Bagley R-L, Torvik P-J (1986) On the fractional calculus model of viscoelastic behavior. J Rheol 30(1):133–155ADSCrossRefMATH Bagley R-L, Torvik P-J (1986) On the fractional calculus model of viscoelastic behavior. J Rheol 30(1):133–155ADSCrossRefMATH
31.
go back to reference Haupt P, Lion A, Backhauss E (2000) On the dynamic behaviour of polymers under finite strains: constitutive modelling and identification of parameters. Int J Solids Struct 37:3633–3646CrossRefMATH Haupt P, Lion A, Backhauss E (2000) On the dynamic behaviour of polymers under finite strains: constitutive modelling and identification of parameters. Int J Solids Struct 37:3633–3646CrossRefMATH
32.
go back to reference Pritz T (2003) Five-parameter fractional derivative model for polymeric damping materials. J Sound Vib 265:935–952ADSCrossRef Pritz T (2003) Five-parameter fractional derivative model for polymeric damping materials. J Sound Vib 265:935–952ADSCrossRef
33.
go back to reference Bechir H, Idjeri M (2011) Computation of the relaxation and creep functions of elastomers from harmonic shear modulus. Mech Time-Depend Mater 15:119–138ADSCrossRef Bechir H, Idjeri M (2011) Computation of the relaxation and creep functions of elastomers from harmonic shear modulus. Mech Time-Depend Mater 15:119–138ADSCrossRef
34.
go back to reference Haupt P, Lion A (2002) On finite linear viscoelasticity of incompressible isotropic materials. Acta Mech 159:87–124CrossRefMATH Haupt P, Lion A (2002) On finite linear viscoelasticity of incompressible isotropic materials. Acta Mech 159:87–124CrossRefMATH
37.
go back to reference Johnson A-R, Quigley C-J (1992) A viscohyperelastic Maxwell model for rubber viscoelasticity. Rubber Chem Technol 65:137–153CrossRef Johnson A-R, Quigley C-J (1992) A viscohyperelastic Maxwell model for rubber viscoelasticity. Rubber Chem Technol 65:137–153CrossRef
38.
go back to reference Kim J-K, Kim K-S, Cho J-Y (1997) Viscoelastic model of finitely deforming rubber and its finite element analysis. J Appl Mech ASME 64:835–841CrossRefMATH Kim J-K, Kim K-S, Cho J-Y (1997) Viscoelastic model of finitely deforming rubber and its finite element analysis. J Appl Mech ASME 64:835–841CrossRefMATH
39.
go back to reference Lubliner J (1985) A model for rubber viscoelasticity. Mech Res Commun 12:93–99CrossRef Lubliner J (1985) A model for rubber viscoelasticity. Mech Res Commun 12:93–99CrossRef
40.
go back to reference Le Tallec P, Rahier C, Kaiss A (1993) A three-dimensional incompressible viscoelasticity in large strains: formulation and numerical approximation. Comput Methods Appl Mech Eng 109:233–258ADSMathSciNetCrossRefMATH Le Tallec P, Rahier C, Kaiss A (1993) A three-dimensional incompressible viscoelasticity in large strains: formulation and numerical approximation. Comput Methods Appl Mech Eng 109:233–258ADSMathSciNetCrossRefMATH
41.
go back to reference Kaliske M, Rothert H (1997) Formulation and implementation of three-dimensional viscoelasticity at small and finite strains. Comput Mech 19:228–239CrossRefMATH Kaliske M, Rothert H (1997) Formulation and implementation of three-dimensional viscoelasticity at small and finite strains. Comput Mech 19:228–239CrossRefMATH
42.
go back to reference Miehe C, Keck J (2000) Superimposed finite elastic-viscoelastic-plastoelastic stress response with damage in filled rubbery polymers: Experiments, modeling and algorithmic implementation. J Mech Phys Solids 48:323–365ADSCrossRefMATH Miehe C, Keck J (2000) Superimposed finite elastic-viscoelastic-plastoelastic stress response with damage in filled rubbery polymers: Experiments, modeling and algorithmic implementation. J Mech Phys Solids 48:323–365ADSCrossRefMATH
43.
go back to reference Reese S, Govindjee S (1998) A theory of finite viscoelasticity and numerical aspects. Int J Solids Struct 35:3455–3482CrossRefMATH Reese S, Govindjee S (1998) A theory of finite viscoelasticity and numerical aspects. Int J Solids Struct 35:3455–3482CrossRefMATH
44.
go back to reference Laiarinandrasana L, Piques R, Robisson A (2003) Visco-hyperelastic model with internal state variable coupled with discontinuous damage concept under total Lagrangian formulation. Int J Plasticity 19:977–1000CrossRefMATH Laiarinandrasana L, Piques R, Robisson A (2003) Visco-hyperelastic model with internal state variable coupled with discontinuous damage concept under total Lagrangian formulation. Int J Plasticity 19:977–1000CrossRefMATH
46.
go back to reference Haupt P, Sedlan K (2001) Viscoplasticity of elastomeric materials. Experimental facts and constitutive modeling. Arch Appl Mech 71:89–109CrossRefMATH Haupt P, Sedlan K (2001) Viscoplasticity of elastomeric materials. Experimental facts and constitutive modeling. Arch Appl Mech 71:89–109CrossRefMATH
47.
go back to reference Rendek M, Lion A (2010) Amplitude dependence of filler-reinforced rubber: experiments, constitutive modelling and FEM—implementation. Int J Solids Struct 47:2918–2936CrossRefMATH Rendek M, Lion A (2010) Amplitude dependence of filler-reinforced rubber: experiments, constitutive modelling and FEM—implementation. Int J Solids Struct 47:2918–2936CrossRefMATH
48.
go back to reference Green M-S, Tobolsky A-V (1946) A new approach of the theory of relaxing polymeric media. J Chem Phys 14(2):80–92ADSCrossRef Green M-S, Tobolsky A-V (1946) A new approach of the theory of relaxing polymeric media. J Chem Phys 14(2):80–92ADSCrossRef
49.
go back to reference Bergström J-S, Boyce M-C (1998) Constitutive modelling of the large strain-time dependent behavior of elastomers. J Mech Phys Solids 46:931–954ADSCrossRefMATH Bergström J-S, Boyce M-C (1998) Constitutive modelling of the large strain-time dependent behavior of elastomers. J Mech Phys Solids 46:931–954ADSCrossRefMATH
50.
go back to reference Reese S (2003) A micromechanically motivated material for the thermo-viscoelastic material behavior of rubber-like polymers. Int J Plasticity 19:909–940CrossRefMATH Reese S (2003) A micromechanically motivated material for the thermo-viscoelastic material behavior of rubber-like polymers. Int J Plasticity 19:909–940CrossRefMATH
51.
go back to reference Drozdov A-D, Dorfmann A (2003) A micro-mechanical model for the response of filled elastomers at finite strains. Int J Plasticity 19(7):1037–1067MathSciNetCrossRefMATH Drozdov A-D, Dorfmann A (2003) A micro-mechanical model for the response of filled elastomers at finite strains. Int J Plasticity 19(7):1037–1067MathSciNetCrossRefMATH
52.
go back to reference Makradi A, Gregory R-V, Ahzi S, Edie D-D (2005) A two phase self-consistent model for the deformation and phase transformation behavior of polymers above the glass transition temperature: application to PET. Int J Plasticity 21:741–758CrossRefMATH Makradi A, Gregory R-V, Ahzi S, Edie D-D (2005) A two phase self-consistent model for the deformation and phase transformation behavior of polymers above the glass transition temperature: application to PET. Int J Plasticity 21:741–758CrossRefMATH
53.
go back to reference Argon A-S, Bulatov V-V, Mott P-H, Suter U-W (1995) Plastic deformation in glassy polymers by atomistic and mesoscopic simulations. J Rheol 39:377–399ADSCrossRef Argon A-S, Bulatov V-V, Mott P-H, Suter U-W (1995) Plastic deformation in glassy polymers by atomistic and mesoscopic simulations. J Rheol 39:377–399ADSCrossRef
54.
go back to reference Caputo M, Mainardi F (1971) Linear models of dissipation in anelastic solids. Riv Nuovo Cimento 1:161–198CrossRef Caputo M, Mainardi F (1971) Linear models of dissipation in anelastic solids. Riv Nuovo Cimento 1:161–198CrossRef
55.
go back to reference Bagley R-L, Torvik P-J (1983) Fractional calculus a different approach to the analysis of viscoelastically damped structures. AIAA J 21:741–748ADSCrossRefMATH Bagley R-L, Torvik P-J (1983) Fractional calculus a different approach to the analysis of viscoelastically damped structures. AIAA J 21:741–748ADSCrossRefMATH
56.
go back to reference Welch S, Rorrer R, Duren R (1999) Application of time-based fractional calculus methods to viscoelastic creep and stress relaxation of materials. Mech Time-Depend Mater 3(3):279–303ADSCrossRef Welch S, Rorrer R, Duren R (1999) Application of time-based fractional calculus methods to viscoelastic creep and stress relaxation of materials. Mech Time-Depend Mater 3(3):279–303ADSCrossRef
58.
go back to reference Padovan J (1987) Computational algoritms for FE formulations involving fractional operators. Comput Mech 2:271–287CrossRefMATH Padovan J (1987) Computational algoritms for FE formulations involving fractional operators. Comput Mech 2:271–287CrossRefMATH
59.
go back to reference Enelund M, Mähler L, Runesson B, Josefson B-M (1999) Formulation and integration of the standard linear viscoelastic solid with fractional order rate laws. Int J Solids Struct 36:2417–2442CrossRefMATH Enelund M, Mähler L, Runesson B, Josefson B-M (1999) Formulation and integration of the standard linear viscoelastic solid with fractional order rate laws. Int J Solids Struct 36:2417–2442CrossRefMATH
60.
go back to reference Schmidt A, Gaul L (2002) Finite element formulation of viscoelastic constitutive equations using fractional time derivatives. Non-Linear Dyn 29:37–55CrossRefMATH Schmidt A, Gaul L (2002) Finite element formulation of viscoelastic constitutive equations using fractional time derivatives. Non-Linear Dyn 29:37–55CrossRefMATH
61.
go back to reference Yuan L, Agrawal O-P (2002) A numerical scheme for dynamic systems containing fractional derivatives. J Vib Acoust 124:321–324CrossRef Yuan L, Agrawal O-P (2002) A numerical scheme for dynamic systems containing fractional derivatives. J Vib Acoust 124:321–324CrossRef
62.
go back to reference Schmidt A, Gaul L (2006) On a critique of a numerical scheme for the calculation of fractionally damped dynamical systems. Mech Res Commun 33:99–107CrossRefMATH Schmidt A, Gaul L (2006) On a critique of a numerical scheme for the calculation of fractionally damped dynamical systems. Mech Res Commun 33:99–107CrossRefMATH
63.
go back to reference Holzapfel G-A (2000) Nonlinear solids mechanics: a continuum approach for engineering. Wiley, Chichester, pp 212–290 Holzapfel G-A (2000) Nonlinear solids mechanics: a continuum approach for engineering. Wiley, Chichester, pp 212–290
65.
go back to reference Batra R-C (2001) Comparison of results from four linear constitutive relations in isotropic elasticity. Int J Non-Linear Mech 36:421–432CrossRefMATH Batra R-C (2001) Comparison of results from four linear constitutive relations in isotropic elasticity. Int J Non-Linear Mech 36:421–432CrossRefMATH
66.
go back to reference Ogden R-W (1997) Nonlinear elastic deformations. Dover Publications, New YorkMATH Ogden R-W (1997) Nonlinear elastic deformations. Dover Publications, New YorkMATH
67.
go back to reference Hassani S, Alaoui Soulimani A, Ehrlacher A (1998) A nonlinear viscoelastic model: the pseudo-linear model. Eur J Mech A 17(4):567–598MathSciNetCrossRefMATH Hassani S, Alaoui Soulimani A, Ehrlacher A (1998) A nonlinear viscoelastic model: the pseudo-linear model. Eur J Mech A 17(4):567–598MathSciNetCrossRefMATH
68.
69.
go back to reference Podlubny I (1999) Fractional differential equations. Academic Press, San Diego, pp 103–109, 223–242 Podlubny I (1999) Fractional differential equations. Academic Press, San Diego, pp 103–109, 223–242
70.
go back to reference Carpinteri A, Mainardi F (1997) Fractals and fractional calculus in continuum mechanics. Springer, ViennaCrossRefMATH Carpinteri A, Mainardi F (1997) Fractals and fractional calculus in continuum mechanics. Springer, ViennaCrossRefMATH
71.
go back to reference Hartmann S, Tschöpe T, Schreiber L, Haupt P (2003) Finite deformations of a carbone black-filled rubber. Experiment, optical measurement and material parameter identification using finite elements. Eur J Mech A 22:309–324CrossRefMATH Hartmann S, Tschöpe T, Schreiber L, Haupt P (2003) Finite deformations of a carbone black-filled rubber. Experiment, optical measurement and material parameter identification using finite elements. Eur J Mech A 22:309–324CrossRefMATH
72.
go back to reference Charrier P, Dacorogna B, Hanouzet B, Laborde P (1988) An existence theorem for slightly compressible materials in nonlinear elasticity. SIAM J Math Anal 19:70–85MathSciNetCrossRefMATH Charrier P, Dacorogna B, Hanouzet B, Laborde P (1988) An existence theorem for slightly compressible materials in nonlinear elasticity. SIAM J Math Anal 19:70–85MathSciNetCrossRefMATH
73.
go back to reference Goldberg W, Lianis G (1970) Stress relaxation in combined torsion–tension. J Appl Mech 37(1):53–60CrossRef Goldberg W, Lianis G (1970) Stress relaxation in combined torsion–tension. J Appl Mech 37(1):53–60CrossRef
74.
go back to reference Yuan H-L, Lianis G (1972) Experimental investigation of nonlinear viscoelasticity in combined finite torsion–tension. Trans Soc Rheol 16(4):615–633CrossRef Yuan H-L, Lianis G (1972) Experimental investigation of nonlinear viscoelasticity in combined finite torsion–tension. Trans Soc Rheol 16(4):615–633CrossRef
75.
go back to reference Yuan H-L (1971) Static and dynamique experimental investigation of nonlinear isothermal viscoelasticity. PhD Thesis, Purdue University Yuan H-L (1971) Static and dynamique experimental investigation of nonlinear isothermal viscoelasticity. PhD Thesis, Purdue University
76.
go back to reference Hartmann S (2001) Parameter estimation of hyperelasticity relations of generalized polynomial-type with constraint conditions. Int J Solids Struct 38(44–45):7999–8018CrossRefMATH Hartmann S (2001) Parameter estimation of hyperelasticity relations of generalized polynomial-type with constraint conditions. Int J Solids Struct 38(44–45):7999–8018CrossRefMATH
77.
go back to reference Bell J-F (1973) The experimental foundation of solid mechanics. In: Trusdell C (ed) Hundbuch der Physik, VIa/1. Springer, Berlin Bell J-F (1973) The experimental foundation of solid mechanics. In: Trusdell C (ed) Hundbuch der Physik, VIa/1. Springer, Berlin
78.
go back to reference Batra R-C, Yu J-H (1999) Linear constitutive relations in isotropic finite viscoelasticity. J Elasticity 55:73–77CrossRefMATH Batra R-C, Yu J-H (1999) Linear constitutive relations in isotropic finite viscoelasticity. J Elasticity 55:73–77CrossRefMATH
80.
go back to reference Freed A, Diethelm K (2006) Fractional calculus in biomechanics: a 3D viscoelastic model using regularized fractional-derivative kernels with application to the human calcaneal fat pad. Biomech Model Mechanobiol 5:203–215CrossRef Freed A, Diethelm K (2006) Fractional calculus in biomechanics: a 3D viscoelastic model using regularized fractional-derivative kernels with application to the human calcaneal fat pad. Biomech Model Mechanobiol 5:203–215CrossRef
81.
82.
go back to reference Ferry J-D (1980) Viscoelastic properties of polymers. Wiley, New York Ferry J-D (1980) Viscoelastic properties of polymers. Wiley, New York
Metadata
Title
Phenomenological isotropic visco-hyperelasticity: a differential model based on fractional derivatives
Authors
Safia Bouzidi
Hocine Bechir
Fabrice Brémand
Publication date
05-11-2015
Publisher
Springer Netherlands
Published in
Journal of Engineering Mathematics / Issue 1/2016
Print ISSN: 0022-0833
Electronic ISSN: 1573-2703
DOI
https://doi.org/10.1007/s10665-015-9818-6

Other articles of this Issue 1/2016

Journal of Engineering Mathematics 1/2016 Go to the issue

Premium Partners