Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

25-10-2019 | Composites & nanocomposites | Issue 5/2020

Journal of Materials Science 5/2020

Phosphonium-based ionic liquid as crosslinker/dispersing agent for epoxy/carbon nanotube nanocomposites: electrical and dynamic mechanical properties

Journal:
Journal of Materials Science > Issue 5/2020
Authors:
Danielle F. Santos, Anna Paula A. Carvalho, Bluma G. Soares
Important notes

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

Phosphonium-based ionic liquid (IL), tributyl(ethyl)-phosphonium diethylphosphate, was investigated as the curing agent for the preparation of nanocomposites involving multi-walled carbon nanotube (CNT) and epoxy resin (ER). Different mixing procedures were employed in order to attain better filler dispersion within the epoxy matrix. The dispersion effectiveness was evaluated by rheological behavior and transmission electron microscopy. Also the electrical conductivity and dynamic mechanical properties were investigated as a function of the mixing procedure. The AC electrical conductivity stayed in the range of 0.10–0.5 S m−1 with the addition of 1 phr of CNT. The non-covalent functionalization of CNT with the IL by previously milling the CNT with IL in a mortar resulted in better reinforcing effect and higher conductivity. Thus, the use of high shear speed mixer combined with acetone was considered the best mixing conditions. At these conditions, composites with high electrical conductivity and better dynamic mechanical properties were obtained. The effect of the amounts of CNT on the main properties of the ER-based nanocomposites was also investigated for systems cured with different amounts of IL. Both systems displayed low electrical percolation (1.6 × 10−4 and 4.7 × 10−4 volume fraction for systems cured with 10 or 30 phr of IL, respectively). Lower amount of IL resulted in outstanding dynamic mechanical properties, as well as better thermal stability.

Please log in to get access to this content

To get access to this content you need the following product:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Literature
About this article

Other articles of this Issue 5/2020

Journal of Materials Science 5/2020 Go to the issue

Premium Partners

    Image Credits