Skip to main content
Top
Published in: Journal of Materials Science: Materials in Electronics 24/2017

06-09-2017

Photocatalytic and antibacterial studies of indium-doped ZnO nanoparticles synthesized by co-precipitation technique

Authors: K. Pradeev Raj, K. Sadaiyandi, A. Kennedy, Suresh Sagadevan

Published in: Journal of Materials Science: Materials in Electronics | Issue 24/2017

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Indium (0.01, 0.04 and 0.06 mol%) doped ZnO nanoparticles (IZ-NPs) have been synthesized using the facile co-precipitation method. The prepared nanoparticles (NPs) were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), Elemental dispersive spectroscopy (EDS), UV–Vis absorption spectrum (UV–Vis) and photoluminescence (PL) techniques. The photocatalytic activities were evaluated for the degradation of Rhodamine-B (Rh-B) under UV–Vis irradiation. The antibacterial properties of Zinc oxide nanoparticles (NPs) were investigated using human pathogens and were compared based on the diameter of inhibition zone using Agar-well diffusion method. Structural studies confirm the main presence of hexagonal wurtzite ZnO phase and well-crystalline. The incorporation of indium ions was responsible for the change in their various lattice parameters. The average crystallite sizes were decreased by increasing the indium dopant concentration. SEM images reveal the synthesized NPs are in nanometer range with various shape and improved crystallinity is noted for higher doping (In) concentration. The presence of indium in the host lattice was confirmed by EDS spectroscopy. Optical studies shows that the band-gap energy decreases (3.34–3.17) with an increase in doping concentration (2–6%). The photoluminescence (PL) spectrum reveals the UV emission is strong near the band-edge region (NBE) (392 nm) and intrinsic defects encountered in series of visible emission peaks around 400–560 nm. From the efficiency of the photocatalytic activity, higher dopant concentration (6%) showed higher photocatalytic activity than the other NPs in destroying Rhodamine B (RhB) under UV–Vis light irradiation. The synthesized In-doped Zinc oxide nanostructures show maximum antibacterial activity against Staphylococcus aureus and Staphylococcus epidermidis.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference P.K. Sharma, M. Kumar, A.C. Pandey, Green luminescent ZnO:Cu2+ nanoparticles for their applications in white-light generation from UV LEDs. J. Nanocryst. Res. 13, 1629–1637 (2010) P.K. Sharma, M. Kumar, A.C. Pandey, Green luminescent ZnO:Cu2+ nanoparticles for their applications in white-light generation from UV LEDs. J. Nanocryst. Res. 13, 1629–1637 (2010)
2.
go back to reference Y. Zhang, M.K. Ram, E.K. Stefanakos, D. Yogi Goswami, Synthesis, characterization, and applications of ZnO nanowires. J. Nanomater. 2012, 1–22, (2012) Y. Zhang, M.K. Ram, E.K. Stefanakos, D. Yogi Goswami, Synthesis, characterization, and applications of ZnO nanowires. J. Nanomater. 2012, 1–22, (2012)
3.
go back to reference S.B. Rana, P. Singh, A.K. Sharma, A.W. Carbonari, R. Dogra, Synthesis and characterization of pure and doped ZnO nanoparticles. J. Optoelectron. Adv. Mater. 12, 257–261 (2010) S.B. Rana, P. Singh, A.K. Sharma, A.W. Carbonari, R. Dogra, Synthesis and characterization of pure and doped ZnO nanoparticles. J. Optoelectron. Adv. Mater. 12, 257–261 (2010)
4.
go back to reference N. El-Atab, A. Nayfeh, Ultra-small ZnO nanoparticles for charge storage in MOS-memory devices. ECS Trans. 72, 73–79, (2016) N. El-Atab, A. Nayfeh, Ultra-small ZnO nanoparticles for charge storage in MOS-memory devices. ECS Trans. 72, 73–79, (2016)
5.
go back to reference M. Willander, O. Nur, J.R. Sadaf, M.I. Qadir, S. Zaman, A. Zainelabdin, N. Bano, I. Hussain, Luminescence from zinc oxide nanostructures and polymers and their hybrid devices. Materials 3, 2643–2667 (2010) M. Willander, O. Nur, J.R. Sadaf, M.I. Qadir, S. Zaman, A. Zainelabdin, N. Bano, I. Hussain, Luminescence from zinc oxide nanostructures and polymers and their hybrid devices. Materials 3, 2643–2667 (2010)
6.
go back to reference P.K. Sharma, M. Kumar, A.C. Pandey, Green luminescent ZnO:Cu2+ nanoparticles for their applications in white-light generation from UV LEDs. J. Nanopart. Res. 13, 1629–1637 (2011) P.K. Sharma, M. Kumar, A.C. Pandey, Green luminescent ZnO:Cu2+ nanoparticles for their applications in white-light generation from UV LEDs. J. Nanopart. Res. 13, 1629–1637 (2011)
7.
go back to reference L. Zhang, Y. Ding, M. Povey, D. York, ZnO nanofluids: a potential antibacterial agent. Prog. Nat. Sci. 18, 939–944 (2008) L. Zhang, Y. Ding, M. Povey, D. York, ZnO nanofluids: a potential antibacterial agent. Prog. Nat. Sci. 18, 939–944 (2008)
8.
go back to reference H.S. Hassan, A.B. Kashyout, I. Morsi, A.A.A. Nasser, I. Ali, Synthesis, characterization and fabrication of gas sensor devices using ZnO and ZnO:In nano materials. J. Basic Appl. Sci. 3, 216–221 (2014) H.S. Hassan, A.B. Kashyout, I. Morsi, A.A.A. Nasser, I. Ali, Synthesis, characterization and fabrication of gas sensor devices using ZnO and ZnO:In nano materials. J. Basic Appl. Sci. 3, 216–221 (2014)
9.
go back to reference C. Tian, Q. Zhang, A. Wu, M. Jiang, Z. Liang, B. Jiang, H. Fu, Cost-effective large-scale synthesis of ZnO photocatalyst with excellent performance for dye photo degradation. Chem. Commun. (Camb) 48, 2858–2860 (2012) C. Tian, Q. Zhang, A. Wu, M. Jiang, Z. Liang, B. Jiang, H. Fu, Cost-effective large-scale synthesis of ZnO photocatalyst with excellent performance for dye photo degradation. Chem. Commun. (Camb) 48, 2858–2860 (2012)
10.
go back to reference S. Kuriakose, V. Choudhary, B. Satpati, S. Mohapatra, Structural, optical, and magnetic properties of Ni. Beilstein J. Nanotechnol. 5, 639–650 (2014) S. Kuriakose, V. Choudhary, B. Satpati, S. Mohapatra, Structural, optical, and magnetic properties of Ni. Beilstein J. Nanotechnol. 5, 639–650 (2014)
11.
go back to reference P. Rathore, A.K. Chittora, R. Ameta, S. Sharma, Enhancement of photocatalytic activity of zinc oxide by doping with nitrogen. Sci. Revs. Chem. Commun. 5, 113–124 (2015) P. Rathore, A.K. Chittora, R. Ameta, S. Sharma, Enhancement of photocatalytic activity of zinc oxide by doping with nitrogen. Sci. Revs. Chem. Commun. 5, 113–124 (2015)
12.
go back to reference A.H. Abdullah, L.K. Mun, Z. Zainal, M.Z. Hussein, Photodegradation of chlorophenoxyacetic acids by ZnO/γ–Fe2O3 nanocatalysts: a comparative study. Int. J. Chem. 5, 56–65 (2013) A.H. Abdullah, L.K. Mun, Z. Zainal, M.Z. Hussein, Photodegradation of chlorophenoxyacetic acids by ZnO/γ–Fe2O3 nanocatalysts: a comparative study. Int. J. Chem. 5, 56–65 (2013)
13.
go back to reference S. Baruah, M.A. Mahmood, M.T.Z. Myint, T. Bora, J. Dutta, Enhanced visible light photocatalysis through fast crystallization of zinc oxide nanorods. Beilstein J. Nanotechnol. 1, 14–20 (2010) S. Baruah, M.A. Mahmood, M.T.Z. Myint, T. Bora, J. Dutta, Enhanced visible light photocatalysis through fast crystallization of zinc oxide nanorods. Beilstein J. Nanotechnol. 1, 14–20 (2010)
14.
go back to reference M.T. Uddin, Y. Nicolas, C. Olivier, L. Servant, T. Toupance, S. Li, A. Klein, W. Jaegermann, Improved photocatalytic activity in RuO2–ZnO nanoparticulate heterostructures due to inhomogeneous space charge effects. Phys. Chem. Chem. Phys. 17, 5090–5102 (2015) M.T. Uddin, Y. Nicolas, C. Olivier, L. Servant, T. Toupance, S. Li, A. Klein, W. Jaegermann, Improved photocatalytic activity in RuO2–ZnO nanoparticulate heterostructures due to inhomogeneous space charge effects. Phys. Chem. Chem. Phys. 17, 5090–5102 (2015)
15.
go back to reference R. Yousefi, F. Jamali-Sheini, M. Cheraghizade, S. Khosravi-Gandomani, A. Sáaedi, N.M. Huang, W.J. Basirun, M. Azarang, Enhanced visible-light photocatalytic activity of strontium-doped zinc oxide nanoparticles. Mater. Sci. Semicond. Process. 32, 152–159 (2015) R. Yousefi, F. Jamali-Sheini, M. Cheraghizade, S. Khosravi-Gandomani, A. Sáaedi, N.M. Huang, W.J. Basirun, M. Azarang, Enhanced visible-light photocatalytic activity of strontium-doped zinc oxide nanoparticles. Mater. Sci. Semicond. Process. 32, 152–159 (2015)
16.
go back to reference Y.-M. Hao, S.-Y. Lou, S.-M. Zhou, R.-J. Yuan, G.-Y. Zhu, N. Li, Structural, optical, and magnetic studies of manganese-doped zinc oxide hierarchical microspheres by self-assembly of nanoparticles. Nanoscale Res. Lett. 7(100), 1–9 (2012) Y.-M. Hao, S.-Y. Lou, S.-M. Zhou, R.-J. Yuan, G.-Y. Zhu, N. Li, Structural, optical, and magnetic studies of manganese-doped zinc oxide hierarchical microspheres by self-assembly of nanoparticles. Nanoscale Res. Lett. 7(100), 1–9 (2012)
17.
go back to reference S. Girish Kumar, K.S.R. Koteswara Rao, Zinc oxide based photocatalysis: tailoring surface-bulk structure and related interfacial charge carrier dynamics for better environmental applications. RSC Adv. 5, 3306–3351 (2015) S. Girish Kumar, K.S.R. Koteswara Rao, Zinc oxide based photocatalysis: tailoring surface-bulk structure and related interfacial charge carrier dynamics for better environmental applications. RSC Adv. 5, 3306–3351 (2015)
18.
go back to reference S. Baruah, S.K. Pal, J. Dutta, Nanostructured zinc oxide for water treatment. Nanosci. Nanotechnol. 2, 90–102 (2012) S. Baruah, S.K. Pal, J. Dutta, Nanostructured zinc oxide for water treatment. Nanosci. Nanotechnol. 2, 90–102 (2012)
19.
go back to reference S. Kuriakose, B. Satpati, S. Mohapatra, Enhanced photocatalytic activity of Co doped ZnO nanodisks and nanorods prepared by a facile wet chemical method. Phys. Chem. Chem. Phys. 16, 12741–12749 (2014) S. Kuriakose, B. Satpati, S. Mohapatra, Enhanced photocatalytic activity of Co doped ZnO nanodisks and nanorods prepared by a facile wet chemical method. Phys. Chem. Chem. Phys. 16, 12741–12749 (2014)
20.
go back to reference H. Yamada, K. Suzuki, S. Koizumi, Gene expression profile in human cells exposed to zinc. J. Toxicol. Sci. 32, 193–196 (2007) H. Yamada, K. Suzuki, S. Koizumi, Gene expression profile in human cells exposed to zinc. J. Toxicol. Sci. 32, 193–196 (2007)
21.
go back to reference Y. Fan, R. Liu, W. Du, Q. Lu, H. Pang, F. Gao, Synthesis of copper(II) Co-ordination polymers and conversion into CuO nanostructures with good photocatalytic, antibacterial and lithium ions better performances. J. Mater. Chem. 22, 12609–12617 (2012) Y. Fan, R. Liu, W. Du, Q. Lu, H. Pang, F. Gao, Synthesis of copper(II) Co-ordination polymers and conversion into CuO nanostructures with good photocatalytic, antibacterial and lithium ions better performances. J. Mater. Chem. 22, 12609–12617 (2012)
22.
go back to reference U. Ozgur, H. Morkoc, Zinc Oxide: Fundamentals, Materials and Device Technology. (Wiley, New York, 2009), p. 365 U. Ozgur, H. Morkoc, Zinc Oxide: Fundamentals, Materials and Device Technology. (Wiley, New York, 2009), p. 365
23.
go back to reference H.R. Ghaffarian, M. Saiedi, M.A. Sayyadnejad, Synthesis of ZnO nanoparticles by spray pyrolysis method, Iran. J. Chem. Chem. Eng 30, 1–6 (2011) H.R. Ghaffarian, M. Saiedi, M.A. Sayyadnejad, Synthesis of ZnO nanoparticles by spray pyrolysis method, Iran. J. Chem. Chem. Eng 30, 1–6 (2011)
24.
go back to reference C.-C. Lin, Y.-Y. Li, Synthesis of ZnO nanowires by thermal decomposition of zinc acetate dihydrate. Mater. Chem. Phys. 113, 334–337 (2015) C.-C. Lin, Y.-Y. Li, Synthesis of ZnO nanowires by thermal decomposition of zinc acetate dihydrate. Mater. Chem. Phys. 113, 334–337 (2015)
25.
go back to reference E. Maryanti, D. Damayanti, I. Gustian, S. Salprima Yudha, Synthesis of ZnO nanoparticles by hydrothermal method in aqueous rinds extracts of Sapindus rarak DC. Mater. Lett. 118, 96–98 (2014) E. Maryanti, D. Damayanti, I. Gustian, S. Salprima Yudha, Synthesis of ZnO nanoparticles by hydrothermal method in aqueous rinds extracts of Sapindus rarak DC. Mater. Lett. 118, 96–98 (2014)
26.
go back to reference R.M. Alwan, Q.A. Kadhim, K.M. Sahan, R.A. Ali, R.J. Mahdi, N.A. Kassim, A.N. Jassim, Synthesis of zinc oxide nanoparticles via sol–gel route and their characterization. Appl. Surf. Sci. 5, 1–6 (2015) R.M. Alwan, Q.A. Kadhim, K.M. Sahan, R.A. Ali, R.J. Mahdi, N.A. Kassim, A.N. Jassim, Synthesis of zinc oxide nanoparticles via sol–gel route and their characterization. Appl. Surf. Sci. 5, 1–6 (2015)
28.
go back to reference J. Lang, J. Wang, Q. Zhang, X. Li, Q. Han, M. Wei, Y. Sui, D. Wang, J. Yang, Chemical precipitation synthesis and significant enhancement in photocatalytic activity of Ce-doped ZnO nanoparticles. Ceram. Int. 42, 14175–14181 (2016) J. Lang, J. Wang, Q. Zhang, X. Li, Q. Han, M. Wei, Y. Sui, D. Wang, J. Yang, Chemical precipitation synthesis and significant enhancement in photocatalytic activity of Ce-doped ZnO nanoparticles. Ceram. Int. 42, 14175–14181 (2016)
29.
go back to reference V. Anand, V.C. Srivastav, Zinc oxide nanoparticles synthesis by electrochemical method: optimization of parameters for maximization of productivity and characterization. J. Alloys Compd. 636, 288–292 (2015) V. Anand, V.C. Srivastav, Zinc oxide nanoparticles synthesis by electrochemical method: optimization of parameters for maximization of productivity and characterization. J. Alloys Compd. 636, 288–292 (2015)
30.
go back to reference A. Bagabas, A. Alshammari, M.F.A. Aboud, H. Kosslick, Room-temperature synthesis of zinc oxide nanoparticles in different media and their application in cyanide photodegradation. Nanoscale Res. Lett. 8(516), 1–10 (2013) A. Bagabas, A. Alshammari, M.F.A. Aboud, H. Kosslick, Room-temperature synthesis of zinc oxide nanoparticles in different media and their application in cyanide photodegradation. Nanoscale Res. Lett. 8(516), 1–10 (2013)
32.
go back to reference Z. Chen, S. Li, Y. Tian, S. Wu, W. Zhang, Sythesis of magnesium oxide doped ZnO nanostructures using electrochemical deposition. Int. J. Electrochem. Sci. 7, 10620–10626 (2012) Z. Chen, S. Li, Y. Tian, S. Wu, W. Zhang, Sythesis of magnesium oxide doped ZnO nanostructures using electrochemical deposition. Int. J. Electrochem. Sci. 7, 10620–10626 (2012)
33.
go back to reference M. Schwartz, Smart Materials. (CRC Press, Boca Raton, 2008), pp. 1–3 M. Schwartz, Smart Materials. (CRC Press, Boca Raton, 2008), pp. 1–3
34.
go back to reference S. Talam, S. Rao Karumuri, N. Gunnam, Synthesis, characterization, and spectroscopic properties of ZnO nanoparticles. ISRN Nanotechnol. 2012, 1–6 (2012) S. Talam, S. Rao Karumuri, N. Gunnam, Synthesis, characterization, and spectroscopic properties of ZnO nanoparticles. ISRN Nanotechnol. 2012, 1–6 (2012)
35.
go back to reference P. Geetha Devi, A. Sakthi Velu, Synthesis, structural and optical properties of pure ZnO and Co doped ZnO nanoparticles prepared by the co-precipitation method. J. Theor. Appl. Phys. (2016). doi:10.1007/s40094-016-0221-0 CrossRef P. Geetha Devi, A. Sakthi Velu, Synthesis, structural and optical properties of pure ZnO and Co doped ZnO nanoparticles prepared by the co-precipitation method. J. Theor. Appl. Phys. (2016). doi:10.​1007/​s40094-016-0221-0 CrossRef
36.
go back to reference A. Singh, H.L. Vishwakarma, Study of structural, morphological, optical and electroluminescent properties of undoped ZnO nanorods grown by a simple chemical precipitation. Mater. Sci. Poland 33, 751–759 (2015) A. Singh, H.L. Vishwakarma, Study of structural, morphological, optical and electroluminescent properties of undoped ZnO nanorods grown by a simple chemical precipitation. Mater. Sci. Poland 33, 751–759 (2015)
37.
go back to reference T.A. Abdel-Baset, Y.-W. Fang, B. Anis, C.-G. Duan, M. Abdel-Hafiez, Structural and magnetic properties of transition-metal-doped Zn1 – xFexO. Nanoscale Res. Lett., 11(115), 1–12 (2016) T.A. Abdel-Baset, Y.-W. Fang, B. Anis, C.-G. Duan, M. Abdel-Hafiez, Structural and magnetic properties of transition-metal-doped Zn1 – xFexO. Nanoscale Res. Lett., 11(115), 1–12 (2016)
38.
go back to reference P. Bindu, S. Thomas, Estimation of lattice strain in ZnO nanoparticles: X-ray peak profile analysis. J. Theor. Appl. Phys. 8, 123–134 (2014) P. Bindu, S. Thomas, Estimation of lattice strain in ZnO nanoparticles: X-ray peak profile analysis. J. Theor. Appl. Phys. 8, 123–134 (2014)
39.
go back to reference G. Pavithra, M. Bououdina, S. Dhanapandian, P. Dhamodharan, C. Manoharan, Characterization and study of antibacterial activity of spray pyrolysed ZnO:Al thin films. Appl Nanosci. 6, 815–825 (2016) G. Pavithra, M. Bououdina, S. Dhanapandian, P. Dhamodharan, C. Manoharan, Characterization and study of antibacterial activity of spray pyrolysed ZnO:Al thin films. Appl Nanosci. 6, 815–825 (2016)
40.
go back to reference A. Khorsand Zak, W.H.A. Majid, M.E. Abrishami, R. Yousefi, X-ray analysis of ZnO nanoparticles by Williamsone Hall and size strain plot methods. Solid State Sci. 13, 251–256 A. Khorsand Zak, W.H.A. Majid, M.E. Abrishami, R. Yousefi, X-ray analysis of ZnO nanoparticles by Williamsone Hall and size strain plot methods. Solid State Sci. 13, 251–256
41.
go back to reference S. Kumari, P. Kumar, M. Kar, L. Kumar, V. Kumar, Structural analysis by rietveld method and its correlation with optical propertis of nanocrystalline zinc oxide. Adv. Mater. Lett. 6, 139–147 S. Kumari, P. Kumar, M. Kar, L. Kumar, V. Kumar, Structural analysis by rietveld method and its correlation with optical propertis of nanocrystalline zinc oxide. Adv. Mater. Lett. 6, 139–147
42.
go back to reference V. Sesha Sai Kumar, K. Venkateswara Rao, X-ray peak broadening analysis and optical studies of ZnO nanoparticles derived by surfactant assisted combustion synthesis. J. Nano Electron. Phys. 5, 02026–02026 (2013) V. Sesha Sai Kumar, K. Venkateswara Rao, X-ray peak broadening analysis and optical studies of ZnO nanoparticles derived by surfactant assisted combustion synthesis. J. Nano Electron. Phys. 5, 02026–02026 (2013)
43.
go back to reference S. Mohan, K.S. Thind, G. Sharma, Effect of Nd3+ concentration on the physical and absorption properties of sodium-lead-borate glasses. Braz. J. Phys. 37, 1306–1313 (2007) S. Mohan, K.S. Thind, G. Sharma, Effect of Nd3+ concentration on the physical and absorption properties of sodium-lead-borate glasses. Braz. J. Phys. 37, 1306–1313 (2007)
44.
go back to reference K. N’Konou, M. Haris, Y. Lare, M. Baneto, K. Napo, Effect of barium doping on the physical properties of zinc oxide nanoparticles elaborated via sonochemical synthesis method. Pramana 87, 1–7 (2016) K. N’Konou, M. Haris, Y. Lare, M. Baneto, K. Napo, Effect of barium doping on the physical properties of zinc oxide nanoparticles elaborated via sonochemical synthesis method. Pramana 87, 1–7 (2016)
46.
go back to reference P. Kaur, S. Kumar, N.S. Negi, S.M. Rao, Enhanced magnetism in Cr-doped ZnO nanoparticles with nitrogen co-doping synthesized using sol–gel technique. Appl. Nanosci. 5, 367–372 (2015) P. Kaur, S. Kumar, N.S. Negi, S.M. Rao, Enhanced magnetism in Cr-doped ZnO nanoparticles with nitrogen co-doping synthesized using sol–gel technique. Appl. Nanosci. 5, 367–372 (2015)
47.
go back to reference B.H. Soni, M.P. Deshpande, S.V. Bhatt, N. Garg, N.N. Pandya, S.H. Chaki, Influence of Mn doping on optical properties of ZnO nanoparticles synthesized by microwave irradiation. J. Opt. 42, 328–334 (2013) B.H. Soni, M.P. Deshpande, S.V. Bhatt, N. Garg, N.N. Pandya, S.H. Chaki, Influence of Mn doping on optical properties of ZnO nanoparticles synthesized by microwave irradiation. J. Opt. 42, 328–334 (2013)
48.
go back to reference V. Etacheri, R. Roshan, V. Kumar, Mg-doped ZnO nanoparticles for efficient sunlight-driven photocatalysis. ACS Appl. Mater. Interfaces 4, 2717–2725 (2012) V. Etacheri, R. Roshan, V. Kumar, Mg-doped ZnO nanoparticles for efficient sunlight-driven photocatalysis. ACS Appl. Mater. Interfaces 4, 2717–2725 (2012)
49.
go back to reference C.H. Venkata Reddy, B. Babu, S.V. Prabhakar Vattikuti, R.V.S.S.N. Ravikumar, J. Shim, Structural and optical properties of vanadium doped SnO2 Nanoparticles with high photocatalytic activities. J. Lumin. 179, 26–34 (2016) C.H. Venkata Reddy, B. Babu, S.V. Prabhakar Vattikuti, R.V.S.S.N. Ravikumar, J. Shim, Structural and optical properties of vanadium doped SnO2 Nanoparticles with high photocatalytic activities. J. Lumin. 179, 26–34 (2016)
50.
go back to reference R. Elilarassi, G. Chandrasekaran, Influence of Co-doping on the structural, optical and magnetic properties of ZnO nanoparticles synthesized using auto-combustion method. J. Mater. Sci. 24, 96–105 (2012) R. Elilarassi, G. Chandrasekaran, Influence of Co-doping on the structural, optical and magnetic properties of ZnO nanoparticles synthesized using auto-combustion method. J. Mater. Sci. 24, 96–105 (2012)
51.
go back to reference V. Ganasan, C. Sudarsanakumar, V.P. Radhakrishna Prabhu, R. Mahadevan, Sreeja Sreedharan, Highly transparent and luminescent nanostructured Eu2O3. In 2nd international conference on structural nano composites (NANOSTRUC 2014), Madrid, Spain, pp. 1–6 (2014) V. Ganasan, C. Sudarsanakumar, V.P. Radhakrishna Prabhu, R. Mahadevan, Sreeja Sreedharan, Highly transparent and luminescent nanostructured Eu2O3. In 2nd international conference on structural nano composites (NANOSTRUC 2014), Madrid, Spain, pp. 1–6 (2014)
52.
go back to reference D. Sarkar, P.K. Giri Bappaditya Pal, Structural, optical, and magnetic properties of Ni. Appl. Surf. Sci. 356, 804–811 (2015) D. Sarkar, P.K. Giri Bappaditya Pal, Structural, optical, and magnetic properties of Ni. Appl. Surf. Sci. 356, 804–811 (2015)
53.
go back to reference S. Ahmed, M.G. Rasul, W.N. Martens, R. Brown, M.A. Hashib, Heterogeneous photocatalytic degradation of phenols in wastewater: a review on current status and developments. Desalination 261, 3–18 (2010) S. Ahmed, M.G. Rasul, W.N. Martens, R. Brown, M.A. Hashib, Heterogeneous photocatalytic degradation of phenols in wastewater: a review on current status and developments. Desalination 261, 3–18 (2010)
54.
go back to reference P. HemalathaS. N. Karthick, K.V. Hemalatha, M. Yi, H.-J. Kim, M. Alagar, La-doped ZnO nanoflower as photocatalyst for methylene blue dye degradation under UV irradiation. J. Mater. Sci. 27, 2367–2378 (2015) P. HemalathaS. N. Karthick, K.V. Hemalatha, M. Yi, H.-J. Kim, M. Alagar, La-doped ZnO nanoflower as photocatalyst for methylene blue dye degradation under UV irradiation. J. Mater. Sci. 27, 2367–2378 (2015)
55.
go back to reference Z. Barzgari, A. Ghazizadeh, S.Z. Askari, Preparation of Mn-doped ZnO nanostructured for photocatalytic degradation of orange G under solar light. Res. Chem. Intermed. 42, 84303–84315 (2015) Z. Barzgari, A. Ghazizadeh, S.Z. Askari, Preparation of Mn-doped ZnO nanostructured for photocatalytic degradation of orange G under solar light. Res. Chem. Intermed. 42, 84303–84315 (2015)
56.
go back to reference K.M. Lee, C.W. Lai, K.S. Ngai, J.C. Juan, Recent developments of zinc oxide based photocatalyst in watertreatment technology: a review. Water Res. 88, 428–448 (2016) K.M. Lee, C.W. Lai, K.S. Ngai, J.C. Juan, Recent developments of zinc oxide based photocatalyst in watertreatment technology: a review. Water Res. 88, 428–448 (2016)
57.
go back to reference J. Zhong, J. Li, X.Y. He, J. Zeng, Y. Lu, W. Hu, K. Lin, Improved photocatalytic performance of Pd-doped ZnO. Curr. Appl. Phys. 12, 998–1001 (2012) J. Zhong, J. Li, X.Y. He, J. Zeng, Y. Lu, W. Hu, K. Lin, Improved photocatalytic performance of Pd-doped ZnO. Curr. Appl. Phys. 12, 998–1001 (2012)
58.
go back to reference T. Bhuyan, M. Khanuja, R. Sharma, S. Patel, M.R. Reddy, S. Anand, A. Varma, A Comparative study of pure and copper (CU) doped ZnO nanorods for antibacterial AND photocatalytic applications with their mechanism of action. J. Nanopart. Res. 17, 1–11 (2015) T. Bhuyan, M. Khanuja, R. Sharma, S. Patel, M.R. Reddy, S. Anand, A. Varma, A Comparative study of pure and copper (CU) doped ZnO nanorods for antibacterial AND photocatalytic applications with their mechanism of action. J. Nanopart. Res. 17, 1–11 (2015)
59.
go back to reference I.Y.-Y. Bu, Enhanced photocatalytic activity of sol–gel derived ZnO via the co-doping process. Superlattices Microstruct. 86, 36–42 (2015) I.Y.-Y. Bu, Enhanced photocatalytic activity of sol–gel derived ZnO via the co-doping process. Superlattices Microstruct. 86, 36–42 (2015)
60.
go back to reference H. Zhang, D.R. Yang, Y.J. Ji, X.Y. Ma, J. Xu, D.L. Que, Low temperature synthesis of flowerlike ZnO nanostructures by cetyltri methyl ammonium bromide-assisted hydrothermal process. J. Phys. Chem. B. 108, 3955–3958 (2004) H. Zhang, D.R. Yang, Y.J. Ji, X.Y. Ma, J. Xu, D.L. Que, Low temperature synthesis of flowerlike ZnO nanostructures by cetyltri methyl ammonium bromide-assisted hydrothermal process. J. Phys. Chem. B. 108, 3955–3958 (2004)
61.
go back to reference R. Brayner, R. Ferrari-Iliou, N. Brivois, S. Djediat, M.F. Benedetti, F. Fievet, Toxicological impact studies based on Escherichia coli bacteria in ultrafine ZnO nanoparticles colloidal medium. Nano Lett. 6, 866–870 (2006) R. Brayner, R. Ferrari-Iliou, N. Brivois, S. Djediat, M.F. Benedetti, F. Fievet, Toxicological impact studies based on Escherichia coli bacteria in ultrafine ZnO nanoparticles colloidal medium. Nano Lett. 6, 866–870 (2006)
62.
go back to reference L. Zhang, Y. Jiang, Y. Ding, M. Povey, D. York, Investigation into the antibacterial behaviour of suspensions of ZnO nanoparticles (ZnO nanofluids). J. Nanopart. Res. 9, 479–489 (2007) L. Zhang, Y. Jiang, Y. Ding, M. Povey, D. York, Investigation into the antibacterial behaviour of suspensions of ZnO nanoparticles (ZnO nanofluids). J. Nanopart. Res. 9, 479–489 (2007)
63.
go back to reference S. Sonia, N.D. Jayram, P. Suresh Kumar, D. Mangalaraj, N. Ponpandian, C. Viswanathan, Effect of NaOH concentration on structural, surface and antibacterial activity of CuO nanorods synthesized by direct sonochemical method. Superlattices Microstruct. 66, 1–9 (2014) S. Sonia, N.D. Jayram, P. Suresh Kumar, D. Mangalaraj, N. Ponpandian, C. Viswanathan, Effect of NaOH concentration on structural, surface and antibacterial activity of CuO nanorods synthesized by direct sonochemical method. Superlattices Microstruct. 66, 1–9 (2014)
Metadata
Title
Photocatalytic and antibacterial studies of indium-doped ZnO nanoparticles synthesized by co-precipitation technique
Authors
K. Pradeev Raj
K. Sadaiyandi
A. Kennedy
Suresh Sagadevan
Publication date
06-09-2017
Publisher
Springer US
Published in
Journal of Materials Science: Materials in Electronics / Issue 24/2017
Print ISSN: 0957-4522
Electronic ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-017-7857-7

Other articles of this Issue 24/2017

Journal of Materials Science: Materials in Electronics 24/2017 Go to the issue