Skip to main content
Top

2017 | OriginalPaper | Chapter

24. Photoelectrochemical Conversion Processes

Author : Stuart Licht

Published in: Springer Handbook of Electrochemical Energy

Publisher: Springer Berlin Heidelberg

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Society’s electrical needs are largely continuous. However, clouds and darkness dictate that photovoltaic solar cells have an intermittent output. A photoelectrochemical solar cell (PEC) can generate not only electrical but also electrochemical energy, and provide the basis for a system with an energy storage component. Sufficiently energetic insolation incident on semiconductors can drive electrochemical oxidation/reduction and generate chemical, electrical or electrochemical energy. Aspects include efficient dye sensitized or direct solar to electrical energy conversion, solar electrochemical synthesis (electrolysis), including water splitting to form hydrogen, environmental cleanup and solar energy storage cells. The PEC utilizes light to carry out an electrochemical reaction, converting light to both chemical and electrical energy. This fundamental difference of the photovoltaic (PV) solar cell’s solid/solid interface, and the PEC’s solid/liquid interface has several ramifications in cell function and application. Energetic constraints imposed by single bandgap semiconductors have limited the demonstrated values of photoelectrochemical solar to electrical energy conversion efficiency to 16 %, and multiple bandgap cells can lead to significantly higher conversion efficiencies.
Photoelectrochemical systems may facilitate not only solar to electrical energy conversion, but have also led to investigations in solar photoelectrochemical production of fuels and photoelectrochemical detoxification of pollutants, and efficient solar thermal electrochemical production (STEP) of metals, fuels, bleach and carbon capture [24.1].

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
[1]
go back to reference S. Licht, B. Cui, B. Wang, F.-F. Li, J. Lau, S. Liu: Ammonia synthesis by N2 and steam electrolysis in molten hydroxide suspensions of nanoscale Fe2O3, Science 345(6197), 637–640 (2014)CrossRef S. Licht, B. Cui, B. Wang, F.-F. Li, J. Lau, S. Liu: Ammonia synthesis by N2 and steam electrolysis in molten hydroxide suspensions of nanoscale Fe2O3, Science 345(6197), 637–640 (2014)CrossRef
[2]
go back to reference E. Becquerel: Memoires sur les effets electriques produits sous l’influence des rayons, C.R. 9, 561–567 (1839) E. Becquerel: Memoires sur les effets electriques produits sous l’influence des rayons, C.R. 9, 561–567 (1839)
[3]
go back to reference H. Gerischer: Semiconductor electrode reactions, Adv. Electrochem. Electrochem. Eng. 1, 139 (1961) H. Gerischer: Semiconductor electrode reactions, Adv. Electrochem. Electrochem. Eng. 1, 139 (1961)
[4]
go back to reference H. Gerischer: Semiconductor electrochemistry, Phys. Chem. 9, 463–542 (1970) H. Gerischer: Semiconductor electrochemistry, Phys. Chem. 9, 463–542 (1970)
[5]
go back to reference A. Fujishima, K. Honda: Electrochemical photolysis of water at a semiconductor electrode, Nature 238, 37–38 (1972)CrossRef A. Fujishima, K. Honda: Electrochemical photolysis of water at a semiconductor electrode, Nature 238, 37–38 (1972)CrossRef
[6]
go back to reference T. Rao, D.A. Tryk, A. Fujishima: Applications of TiO2 photocatalysis. In: Semiconductor Electrodes and Photoelectrochemistry, ed. by S. Licht (Wiley-VCH, Weinheim 2002), Chap. 6.1 T. Rao, D.A. Tryk, A. Fujishima: Applications of TiO2 photocatalysis. In: Semiconductor Electrodes and Photoelectrochemistry, ed. by S. Licht (Wiley-VCH, Weinheim 2002), Chap. 6.1
[7]
go back to reference G. Hodes, J. Manassen, D. Cahen: Photoelectrochemical energy conversion and storage using polycrystalline chalcogenide electrodes, Nature 261, 402–404 (1976)CrossRef G. Hodes, J. Manassen, D. Cahen: Photoelectrochemical energy conversion and storage using polycrystalline chalcogenide electrodes, Nature 261, 402–404 (1976)CrossRef
[8]
go back to reference A.B. Ellis, S.W. Kaiser, M.S. Wrighton: Visible light to electrical energy conversion. Stable cadmium sulfide and cadmium selenide photoelectrodes in aqueous electrolytes, J. Am. Chem. Soc. 98, 1635–1637 (1976)CrossRef A.B. Ellis, S.W. Kaiser, M.S. Wrighton: Visible light to electrical energy conversion. Stable cadmium sulfide and cadmium selenide photoelectrodes in aqueous electrolytes, J. Am. Chem. Soc. 98, 1635–1637 (1976)CrossRef
[9]
go back to reference B. Miller, A. Heller: Semiconductor liquid junction solar cells based on anodic sulphide films, Nature 262, 680–681 (1976)CrossRef B. Miller, A. Heller: Semiconductor liquid junction solar cells based on anodic sulphide films, Nature 262, 680–681 (1976)CrossRef
[10]
go back to reference A.J. Nozik: Photoelectrochemistry: Applications to solar energy conversion, Annu. Rev. Phys. Chem. 29, 18–222 (1978)CrossRef A.J. Nozik: Photoelectrochemistry: Applications to solar energy conversion, Annu. Rev. Phys. Chem. 29, 18–222 (1978)CrossRef
[11]
go back to reference M.A. Butler, D.S. Ginley: Review principles of photoelectrochemical, solar energy conversion, J. Mater. Sci. 15, 1–91 (1980)CrossRef M.A. Butler, D.S. Ginley: Review principles of photoelectrochemical, solar energy conversion, J. Mater. Sci. 15, 1–91 (1980)CrossRef
[12]
go back to reference R. Memming: Improvements in solar energy conversion. In: Photochemical Conversion and Storage of Solar Energy, ed. by E. Pelizzetti, M. Schiavello (Kluwer, Dordrecht 1991) pp. 139–212 R. Memming: Improvements in solar energy conversion. In: Photochemical Conversion and Storage of Solar Energy, ed. by E. Pelizzetti, M. Schiavello (Kluwer, Dordrecht 1991) pp. 139–212
[13]
go back to reference S. Licht (Ed.): Semiconductor Electrodes and Photoelectrochemistry (Wiley-VCH, Weinheim 2002) S. Licht (Ed.): Semiconductor Electrodes and Photoelectrochemistry (Wiley-VCH, Weinheim 2002)
[14]
go back to reference M. Archer, A. Nozik (Eds.): Nanostructured and Photoelectrochemical Systems for Solar Photon Conversion, Vol. 3 (World Scientific, Singapore 2008) M. Archer, A. Nozik (Eds.): Nanostructured and Photoelectrochemical Systems for Solar Photon Conversion, Vol. 3 (World Scientific, Singapore 2008)
[15]
go back to reference K. Rajeshwar, S. Licht, R. McConnell (Eds.): The Solar Generation of Hydrogen: Towards a Renewable Energy Future (Springer, New York 2008) K. Rajeshwar, S. Licht, R. McConnell (Eds.): The Solar Generation of Hydrogen: Towards a Renewable Energy Future (Springer, New York 2008)
[16]
go back to reference L. Vayssieres: Solar hydrogen and nanotechnology, SPIE Proc. 6340, 641–664 (2010) L. Vayssieres: Solar hydrogen and nanotechnology, SPIE Proc. 6340, 641–664 (2010)
[17]
go back to reference S. Licht, G. Hodes, R. Tenne, J. Manassen: A light variation insensitive high efficiency solar cell, Nature 326, 863–864 (1987)CrossRef S. Licht, G. Hodes, R. Tenne, J. Manassen: A light variation insensitive high efficiency solar cell, Nature 326, 863–864 (1987)CrossRef
[18]
go back to reference R. Tenne, G. Hodes: Improved efficiency of CdSe photoanodes by photoelectrochemical etching, Appl. Phys. Lett. 37, 428–430 (1980)CrossRef R. Tenne, G. Hodes: Improved efficiency of CdSe photoanodes by photoelectrochemical etching, Appl. Phys. Lett. 37, 428–430 (1980)CrossRef
[19]
go back to reference S. Licht: A description of energy conversion in photoelectrochemical solar cells, Nature 330, 148–151 (1987)CrossRef S. Licht: A description of energy conversion in photoelectrochemical solar cells, Nature 330, 148–151 (1987)CrossRef
[20]
go back to reference S. Licht, D. Peramunage: Efficient photoelectrochemical solar cells from electrolyte modification, Nature 345, 330–333 (1990)CrossRef S. Licht, D. Peramunage: Efficient photoelectrochemical solar cells from electrolyte modification, Nature 345, 330–333 (1990)CrossRef
[21]
go back to reference S. Licht: Multiple bandgap semiconductorelectrolyte solar energy conversion, J. Phys. Chem. B 105, 6281–6294 (2001)CrossRef S. Licht: Multiple bandgap semiconductorelectrolyte solar energy conversion, J. Phys. Chem. B 105, 6281–6294 (2001)CrossRef
[22]
go back to reference H. Tributsch: Reaction of excited chlorophyll molecules at electrodes and in photosynthesis, Photochem. Photobiol. 16(4), 261–269 (1972)CrossRef H. Tributsch: Reaction of excited chlorophyll molecules at electrodes and in photosynthesis, Photochem. Photobiol. 16(4), 261–269 (1972)CrossRef
[23]
go back to reference H. Tsubomura, M. Matsumura, Y. Nomura, T. Amamiya: Dye sensitised zinc oxide: Aqueous electrolyte: Platinum photocell, Nature 261, 402–403 (1976)CrossRef H. Tsubomura, M. Matsumura, Y. Nomura, T. Amamiya: Dye sensitised zinc oxide: Aqueous electrolyte: Platinum photocell, Nature 261, 402–403 (1976)CrossRef
[24]
go back to reference B. O’Regan, M. Grätzel: A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films, Nature 353, 737–740 (1991)CrossRef B. O’Regan, M. Grätzel: A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films, Nature 353, 737–740 (1991)CrossRef
[25]
go back to reference D. Wei: Dye sensitized solar cells, Int. J. Mol. Sci. 11, 1103–1113 (2010)CrossRef D. Wei: Dye sensitized solar cells, Int. J. Mol. Sci. 11, 1103–1113 (2010)CrossRef
[26]
go back to reference S. Licht: Efficient solar generation of hydrogen fuel – A fundamental analysis, Electrochem. Commun. 4, 789–794 (2002) S. Licht: Efficient solar generation of hydrogen fuel – A fundamental analysis, Electrochem. Commun. 4, 789–794 (2002)
[27]
go back to reference S. Licht: Electrochemical potential tuned solar water splitting, Chem. Commun. 2006, 3006–3007 (2003)CrossRef S. Licht: Electrochemical potential tuned solar water splitting, Chem. Commun. 2006, 3006–3007 (2003)CrossRef
[28]
go back to reference S. Licht: STEP (solar thermal electrochemical photo) generation of energetic molecules: A solar chemical process to end anthropogenic global warming, J. Phys. Chem. C 113, 16283–16292 (2009)CrossRef S. Licht: STEP (solar thermal electrochemical photo) generation of energetic molecules: A solar chemical process to end anthropogenic global warming, J. Phys. Chem. C 113, 16283–16292 (2009)CrossRef
[29]
go back to reference S. Licht: Optimizing photoelectrochemical solar energy conversion: Multiple bandgap and solution phase phenomenon. In: Semiconductor Electrodes and Photoelectrochemistry, ed. by S. Licht (Wiley-VCH, Weinheim 2002), Chap. 4.4 S. Licht: Optimizing photoelectrochemical solar energy conversion: Multiple bandgap and solution phase phenomenon. In: Semiconductor Electrodes and Photoelectrochemistry, ed. by S. Licht (Wiley-VCH, Weinheim 2002), Chap. 4.4
[30]
go back to reference S. Licht, D. Peramunage: Rational electrolyte modification of n-CdSe/([KFe(CN)6]3-/2-) photoelectrochemistry, J. Electrochem. Soc. 139, L23–L26 (1992)CrossRef S. Licht, D. Peramunage: Rational electrolyte modification of n-CdSe/([KFe(CN)6]3-/2-) photoelectrochemistry, J. Electrochem. Soc. 139, L23–L26 (1992)CrossRef
[31]
go back to reference S. Licht, B. Wang, T. Soga, M. Umeno: Light invariant, efficient, multiple bandgap AlGaAs/Si/metal hydride solar cell, Appl. Phys. Lett. 74, 4055–4057 (1999)CrossRef S. Licht, B. Wang, T. Soga, M. Umeno: Light invariant, efficient, multiple bandgap AlGaAs/Si/metal hydride solar cell, Appl. Phys. Lett. 74, 4055–4057 (1999)CrossRef
[32]
go back to reference B. Wang, S. Licht, T. Soga, M. Umeno: Stable cycling behavior of the light invariant AlGaAs/Si/metal hydride solar cell, Sol. Energy Mater. Sol. Cells 64, 311–320 (2000)CrossRef B. Wang, S. Licht, T. Soga, M. Umeno: Stable cycling behavior of the light invariant AlGaAs/Si/metal hydride solar cell, Sol. Energy Mater. Sol. Cells 64, 311–320 (2000)CrossRef
[33]
go back to reference S. Licht, G. Hodes: Photoelectrochemical storage cells. In: Nanostructured and Photochemical Systems for Solar Photon Conversion, Vol. 3, ed. by M. Archer, A. Nozik (World Scientific, Singapore 2008), Chap. 10 S. Licht, G. Hodes: Photoelectrochemical storage cells. In: Nanostructured and Photochemical Systems for Solar Photon Conversion, Vol. 3, ed. by M. Archer, A. Nozik (World Scientific, Singapore 2008), Chap. 10
[34]
go back to reference H. Snaith, A. Moule, C. Klein, K. Meerholz, R.H. Friend, M. Grätzel: Efficiency enhancements in solid-state hybrid solar cells via reduced charge recombination and increased light capture, Nano Lett. 7, 3372–3376 (2007)CrossRef H. Snaith, A. Moule, C. Klein, K. Meerholz, R.H. Friend, M. Grätzel: Efficiency enhancements in solid-state hybrid solar cells via reduced charge recombination and increased light capture, Nano Lett. 7, 3372–3376 (2007)CrossRef
[35]
go back to reference M.K. Naseeruddin, M. Grätzel: Dye-sensitized regenerative solar cells. In: Semiconductor Electrodes and Photoelectrochemistry, ed. by S. Licht (Wiley-VCH, Weinheim 2002), Chap. 5.2 M.K. Naseeruddin, M. Grätzel: Dye-sensitized regenerative solar cells. In: Semiconductor Electrodes and Photoelectrochemistry, ed. by S. Licht (Wiley-VCH, Weinheim 2002), Chap. 5.2
[36]
go back to reference J. Nelson: Charge transport in dye-sensitized systems. In: Semiconductor Electrodes and Photoelectrochemistry, ed. by S. Licht (Wiley-VCH, Weinheim 2002), Chap. 5.3 J. Nelson: Charge transport in dye-sensitized systems. In: Semiconductor Electrodes and Photoelectrochemistry, ed. by S. Licht (Wiley-VCH, Weinheim 2002), Chap. 5.3
[37]
go back to reference K. Uzaki, T. Nishimura, J. Usagawa, S. Hayase, M. Kono, Y. Yamaguchi: Dye-sensitized solar cells consisting of 3D-electrodes – A review: Aiming at high efficiency from the view point of light harvesting and charge collection, J. Solar Energy Eng.-Trans. ASME 132, 021204 (2010)CrossRef K. Uzaki, T. Nishimura, J. Usagawa, S. Hayase, M. Kono, Y. Yamaguchi: Dye-sensitized solar cells consisting of 3D-electrodes – A review: Aiming at high efficiency from the view point of light harvesting and charge collection, J. Solar Energy Eng.-Trans. ASME 132, 021204 (2010)CrossRef
[38]
go back to reference J.H. Wu, Z. Lan, S.C. Hao, P. Li, J. Lin, M. Huang, L. Fang, Y. Huang: Progress on the electrolytes for dye-sensitized solar cells, Pure Appl. Chem. 80, 2241–2258 (2008) J.H. Wu, Z. Lan, S.C. Hao, P. Li, J. Lin, M. Huang, L. Fang, Y. Huang: Progress on the electrolytes for dye-sensitized solar cells, Pure Appl. Chem. 80, 2241–2258 (2008)
[39]
go back to reference T.W. Hamann, R.A. Jensen, A.B.F. Martinson, H. Van Ryswykac, J.T. Hupp: Advancing beyond current generation dye-sensitized solar cells, Energy Environ. Sci. 1, 66–78 (2008)CrossRef T.W. Hamann, R.A. Jensen, A.B.F. Martinson, H. Van Ryswykac, J.T. Hupp: Advancing beyond current generation dye-sensitized solar cells, Energy Environ. Sci. 1, 66–78 (2008)CrossRef
[40]
go back to reference B. Miller, S. Licht, M.E. Orazem, P.C. Searson: Photoelectrochemical systems, Crit. Rev. Surf. Chem. 3, 29 (1994) B. Miller, S. Licht, M.E. Orazem, P.C. Searson: Photoelectrochemical systems, Crit. Rev. Surf. Chem. 3, 29 (1994)
[41]
go back to reference C.H. Henry: Limiting efficiencies of ideal single and multiple energy gap terrestrial solar cells, J. Appl. Phys. 51, 4494–4500 (1980)CrossRef C.H. Henry: Limiting efficiencies of ideal single and multiple energy gap terrestrial solar cells, J. Appl. Phys. 51, 4494–4500 (1980)CrossRef
[42]
go back to reference D.J. Friedman, S.R. Kurtz, K. Bertness, A.E. Kibbler, C. Kramer, J.M. Olsen, D.L. King, B.R. Hansen, J.K. Snyder: 30.2% efficient GaInP/GaAs monolithic two-terminal tandem concentrator cell, Progr. Photovolt. 3, 47–50 (1995)CrossRef D.J. Friedman, S.R. Kurtz, K. Bertness, A.E. Kibbler, C. Kramer, J.M. Olsen, D.L. King, B.R. Hansen, J.K. Snyder: 30.2% efficient GaInP/GaAs monolithic two-terminal tandem concentrator cell, Progr. Photovolt. 3, 47–50 (1995)CrossRef
[43]
go back to reference J.P. Benner, J.M. Olson, T.J. Coutts: Recent advances in high-efficiency solar cells, Adv. Solar Energy 7, 125–165 (1992) J.P. Benner, J.M. Olson, T.J. Coutts: Recent advances in high-efficiency solar cells, Adv. Solar Energy 7, 125–165 (1992)
[44]
go back to reference M.A. Green, K. Emery, K. Bucher, D.L. King, S. Igari: Solar cell efficiency tables (version 8), Progr. Photovolt. 4, 321–325 (1996)CrossRef M.A. Green, K. Emery, K. Bucher, D.L. King, S. Igari: Solar cell efficiency tables (version 8), Progr. Photovolt. 4, 321–325 (1996)CrossRef
[45]
go back to reference T. Soga, T. Kato, M. Yang, M. Umeno, T. Jimbo: High efficiency AIGaAs/Si monolithic tandem solar cell grown by metalorganic chemical vapor deposition, J. Appl. Phys. 78, 4196–4199 (1995)CrossRef T. Soga, T. Kato, M. Yang, M. Umeno, T. Jimbo: High efficiency AIGaAs/Si monolithic tandem solar cell grown by metalorganic chemical vapor deposition, J. Appl. Phys. 78, 4196–4199 (1995)CrossRef
[46]
go back to reference R.R. King, D.C. Law, K.M. Edmondson, C.M. Fetzer, G.S. Kinsey, H. Yoon, R.A. Sherif, N.H. Karam: 40% efficient metamorphic GaInP/GaInAs/Ge multijunction solar cells, Appl. Phys. Lett. 90, 183516–183518 (2007)CrossRef R.R. King, D.C. Law, K.M. Edmondson, C.M. Fetzer, G.S. Kinsey, H. Yoon, R.A. Sherif, N.H. Karam: 40% efficient metamorphic GaInP/GaInAs/Ge multijunction solar cells, Appl. Phys. Lett. 90, 183516–183518 (2007)CrossRef
[47]
go back to reference N. Alonso-Vante, H. Colell, U. Stimming, H. Tributsch: Anomalous low-temperature kinetic effects for oxygen evolution on ruthenium dioxide and platinum electrodes, J. Phys. Chem. 97, 7381–7384 (1993)CrossRef N. Alonso-Vante, H. Colell, U. Stimming, H. Tributsch: Anomalous low-temperature kinetic effects for oxygen evolution on ruthenium dioxide and platinum electrodes, J. Phys. Chem. 97, 7381–7384 (1993)CrossRef
[48]
go back to reference S. Licht: Efficient solar-driven synthesis, carbon capture, and desalinization, STEP: Solar thermal electrochemical production of fuels, metals, bleach, Adv. Mater. 47, 5592–5612 (2011)CrossRef S. Licht: Efficient solar-driven synthesis, carbon capture, and desalinization, STEP: Solar thermal electrochemical production of fuels, metals, bleach, Adv. Mater. 47, 5592–5612 (2011)CrossRef
[49]
go back to reference S. Licht, H. Wu, C. Hettige, B. Wang, J. Lau, J. Asercion, J. Stuart: STEP cement: Solar thermal electrochemical production of CaO without CO2 emission, Chem. Commun. 48, 6019–6602 (2012)CrossRef S. Licht, H. Wu, C. Hettige, B. Wang, J. Lau, J. Asercion, J. Stuart: STEP cement: Solar thermal electrochemical production of CaO without CO2 emission, Chem. Commun. 48, 6019–6602 (2012)CrossRef
[50]
go back to reference B. Cui, S. Licht: Critical STEP advances for sustainable iron production, Green Chem. 113, 881–884 (2013)CrossRef B. Cui, S. Licht: Critical STEP advances for sustainable iron production, Green Chem. 113, 881–884 (2013)CrossRef
[51]
go back to reference S. Licht: Solar water splitting to generate hydrogen fuel: Photothermal electrochemical analysis, J. Phys. Chem. B 107(18), 4253–4260 (2003)CrossRef S. Licht: Solar water splitting to generate hydrogen fuel: Photothermal electrochemical analysis, J. Phys. Chem. B 107(18), 4253–4260 (2003)CrossRef
[52]
go back to reference J. Ren, F.-F. Li, J. Lau, L. Gonzalez-Urbina, S. Licht: One-pot synthesis of carbon nanofibers from CO2, Nano Lett. 15, 6142–6148 (2015)CrossRef J. Ren, F.-F. Li, J. Lau, L. Gonzalez-Urbina, S. Licht: One-pot synthesis of carbon nanofibers from CO2, Nano Lett. 15, 6142–6148 (2015)CrossRef
[53]
go back to reference F.-F. Li, S. Liu, B. Cui, J. Lau, J. Stuart, S. Licht: A one-pot synthesis of hydrogen and carbon fuels from water and carbon dioxide, Adv. Energy Mat. 7(7), 1401791–1401791 (2015)CrossRef F.-F. Li, S. Liu, B. Cui, J. Lau, J. Stuart, S. Licht: A one-pot synthesis of hydrogen and carbon fuels from water and carbon dioxide, Adv. Energy Mat. 7(7), 1401791–1401791 (2015)CrossRef
[54]
[55]
go back to reference J. Ren, J. Lau, M. Lefler, S. Licht: The minimum electrolytic energy needed to convert carbon dioxide by electrolysis in carbonate melts, J. Phys. Chem. C 119, 23342–23349 (2016)CrossRef J. Ren, J. Lau, M. Lefler, S. Licht: The minimum electrolytic energy needed to convert carbon dioxide by electrolysis in carbonate melts, J. Phys. Chem. C 119, 23342–23349 (2016)CrossRef
[56]
go back to reference Y. Zhu, H. Wang, B. Wang, X. Liu, H. Wu, S. Licht: Solar thermoelectric field photocatlysis for efficient organic synthesis exemplified by toluene tobBenzoic acid, Appl. Cat. B 193, 151–159 (2016)CrossRef Y. Zhu, H. Wang, B. Wang, X. Liu, H. Wu, S. Licht: Solar thermoelectric field photocatlysis for efficient organic synthesis exemplified by toluene tobBenzoic acid, Appl. Cat. B 193, 151–159 (2016)CrossRef
[57]
go back to reference S. Licht, A. Douglas, J. Ren, R. Carter, M.M. Lefler, C.L. Pint: Carbon nanotubes produced from ambient carbon dioxide for environmentally sustainable lithium-ion and sodium-ion battery anodes, ACS Cent. Sci. 2, 162–168 (2016)CrossRef S. Licht, A. Douglas, J. Ren, R. Carter, M.M. Lefler, C.L. Pint: Carbon nanotubes produced from ambient carbon dioxide for environmentally sustainable lithium-ion and sodium-ion battery anodes, ACS Cent. Sci. 2, 162–168 (2016)CrossRef
[58]
go back to reference S. Licht, B. Wang, S. Mukerji, T. Soga, M. Umeno, H. Tributsch: Over 18% solar energy conversion to generation of hydrogen fuel; theory and experiment for efficient solar water splitting, Int. J. Hydrogen Energy 280, 425–659 (1998) S. Licht, B. Wang, S. Mukerji, T. Soga, M. Umeno, H. Tributsch: Over 18% solar energy conversion to generation of hydrogen fuel; theory and experiment for efficient solar water splitting, Int. J. Hydrogen Energy 280, 425–659 (1998)
[59]
go back to reference S. Licht, O. Chitayat, H. Bergmann, A. Dick, H. Ayub, S. Ghosh: Efficient STEP (solar thermal electrochemical photo) production of hydrogen – An economic assessment, Int. J. Hydrogen Energy 35, 10867–10882 (2010)CrossRef S. Licht, O. Chitayat, H. Bergmann, A. Dick, H. Ayub, S. Ghosh: Efficient STEP (solar thermal electrochemical photo) production of hydrogen – An economic assessment, Int. J. Hydrogen Energy 35, 10867–10882 (2010)CrossRef
[61]
go back to reference J. Ng, X. Zhang, T. Zhang, J. Pan, A. Du Jian-Hong, D.D. Sun: Construction of self-organized free-standing TiO2 nanotube arrays for effective disinfection of drinking water, J. Chem. Technol. Biotechnol. 85(8), 1061–1066 (2010)CrossRef J. Ng, X. Zhang, T. Zhang, J. Pan, A. Du Jian-Hong, D.D. Sun: Construction of self-organized free-standing TiO2 nanotube arrays for effective disinfection of drinking water, J. Chem. Technol. Biotechnol. 85(8), 1061–1066 (2010)CrossRef
[62]
go back to reference S. Licht, F. Forouzan: Solution modified n-GaAs/Aqueous polyselenide photoelectrochemistry, J. Electrochem. Soc. 142, 1539–1545 (1995)CrossRef S. Licht, F. Forouzan: Solution modified n-GaAs/Aqueous polyselenide photoelectrochemistry, J. Electrochem. Soc. 142, 1539–1545 (1995)CrossRef
[63]
go back to reference C.P. Rhodes, A. Cisar, H. Lee, Y. Fu, A. Anderson, A. Gonzales-Martin: Book of Abstracts, 215-th Electrochem. Soc. Meet., San Francisco (2008), abstract #398 C.P. Rhodes, A. Cisar, H. Lee, Y. Fu, A. Anderson, A. Gonzales-Martin: Book of Abstracts, 215-th Electrochem. Soc. Meet., San Francisco (2008), abstract #398
Metadata
Title
Photoelectrochemical Conversion Processes
Author
Stuart Licht
Copyright Year
2017
Publisher
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-662-46657-5_24