Skip to main content

2017 | OriginalPaper | Buchkapitel

24. Photoelectrochemical Conversion Processes

verfasst von : Stuart Licht

Erschienen in: Springer Handbook of Electrochemical Energy

Verlag: Springer Berlin Heidelberg

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Society’s electrical needs are largely continuous. However, clouds and darkness dictate that photovoltaic solar cells have an intermittent output. A photoelectrochemical solar cell (PEC) can generate not only electrical but also electrochemical energy, and provide the basis for a system with an energy storage component. Sufficiently energetic insolation incident on semiconductors can drive electrochemical oxidation/reduction and generate chemical, electrical or electrochemical energy. Aspects include efficient dye sensitized or direct solar to electrical energy conversion, solar electrochemical synthesis (electrolysis), including water splitting to form hydrogen, environmental cleanup and solar energy storage cells. The PEC utilizes light to carry out an electrochemical reaction, converting light to both chemical and electrical energy. This fundamental difference of the photovoltaic (PV) solar cell’s solid/solid interface, and the PEC’s solid/liquid interface has several ramifications in cell function and application. Energetic constraints imposed by single bandgap semiconductors have limited the demonstrated values of photoelectrochemical solar to electrical energy conversion efficiency to 16 %, and multiple bandgap cells can lead to significantly higher conversion efficiencies.
Photoelectrochemical systems may facilitate not only solar to electrical energy conversion, but have also led to investigations in solar photoelectrochemical production of fuels and photoelectrochemical detoxification of pollutants, and efficient solar thermal electrochemical production (STEP) of metals, fuels, bleach and carbon capture [24.1].

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
[1]
Zurück zum Zitat S. Licht, B. Cui, B. Wang, F.-F. Li, J. Lau, S. Liu: Ammonia synthesis by N2 and steam electrolysis in molten hydroxide suspensions of nanoscale Fe2O3, Science 345(6197), 637–640 (2014)CrossRef S. Licht, B. Cui, B. Wang, F.-F. Li, J. Lau, S. Liu: Ammonia synthesis by N2 and steam electrolysis in molten hydroxide suspensions of nanoscale Fe2O3, Science 345(6197), 637–640 (2014)CrossRef
[2]
Zurück zum Zitat E. Becquerel: Memoires sur les effets electriques produits sous l’influence des rayons, C.R. 9, 561–567 (1839) E. Becquerel: Memoires sur les effets electriques produits sous l’influence des rayons, C.R. 9, 561–567 (1839)
[3]
Zurück zum Zitat H. Gerischer: Semiconductor electrode reactions, Adv. Electrochem. Electrochem. Eng. 1, 139 (1961) H. Gerischer: Semiconductor electrode reactions, Adv. Electrochem. Electrochem. Eng. 1, 139 (1961)
[4]
Zurück zum Zitat H. Gerischer: Semiconductor electrochemistry, Phys. Chem. 9, 463–542 (1970) H. Gerischer: Semiconductor electrochemistry, Phys. Chem. 9, 463–542 (1970)
[5]
Zurück zum Zitat A. Fujishima, K. Honda: Electrochemical photolysis of water at a semiconductor electrode, Nature 238, 37–38 (1972)CrossRef A. Fujishima, K. Honda: Electrochemical photolysis of water at a semiconductor electrode, Nature 238, 37–38 (1972)CrossRef
[6]
Zurück zum Zitat T. Rao, D.A. Tryk, A. Fujishima: Applications of TiO2 photocatalysis. In: Semiconductor Electrodes and Photoelectrochemistry, ed. by S. Licht (Wiley-VCH, Weinheim 2002), Chap. 6.1 T. Rao, D.A. Tryk, A. Fujishima: Applications of TiO2 photocatalysis. In: Semiconductor Electrodes and Photoelectrochemistry, ed. by S. Licht (Wiley-VCH, Weinheim 2002), Chap. 6.1
[7]
Zurück zum Zitat G. Hodes, J. Manassen, D. Cahen: Photoelectrochemical energy conversion and storage using polycrystalline chalcogenide electrodes, Nature 261, 402–404 (1976)CrossRef G. Hodes, J. Manassen, D. Cahen: Photoelectrochemical energy conversion and storage using polycrystalline chalcogenide electrodes, Nature 261, 402–404 (1976)CrossRef
[8]
Zurück zum Zitat A.B. Ellis, S.W. Kaiser, M.S. Wrighton: Visible light to electrical energy conversion. Stable cadmium sulfide and cadmium selenide photoelectrodes in aqueous electrolytes, J. Am. Chem. Soc. 98, 1635–1637 (1976)CrossRef A.B. Ellis, S.W. Kaiser, M.S. Wrighton: Visible light to electrical energy conversion. Stable cadmium sulfide and cadmium selenide photoelectrodes in aqueous electrolytes, J. Am. Chem. Soc. 98, 1635–1637 (1976)CrossRef
[9]
Zurück zum Zitat B. Miller, A. Heller: Semiconductor liquid junction solar cells based on anodic sulphide films, Nature 262, 680–681 (1976)CrossRef B. Miller, A. Heller: Semiconductor liquid junction solar cells based on anodic sulphide films, Nature 262, 680–681 (1976)CrossRef
[10]
Zurück zum Zitat A.J. Nozik: Photoelectrochemistry: Applications to solar energy conversion, Annu. Rev. Phys. Chem. 29, 18–222 (1978)CrossRef A.J. Nozik: Photoelectrochemistry: Applications to solar energy conversion, Annu. Rev. Phys. Chem. 29, 18–222 (1978)CrossRef
[11]
Zurück zum Zitat M.A. Butler, D.S. Ginley: Review principles of photoelectrochemical, solar energy conversion, J. Mater. Sci. 15, 1–91 (1980)CrossRef M.A. Butler, D.S. Ginley: Review principles of photoelectrochemical, solar energy conversion, J. Mater. Sci. 15, 1–91 (1980)CrossRef
[12]
Zurück zum Zitat R. Memming: Improvements in solar energy conversion. In: Photochemical Conversion and Storage of Solar Energy, ed. by E. Pelizzetti, M. Schiavello (Kluwer, Dordrecht 1991) pp. 139–212 R. Memming: Improvements in solar energy conversion. In: Photochemical Conversion and Storage of Solar Energy, ed. by E. Pelizzetti, M. Schiavello (Kluwer, Dordrecht 1991) pp. 139–212
[13]
Zurück zum Zitat S. Licht (Ed.): Semiconductor Electrodes and Photoelectrochemistry (Wiley-VCH, Weinheim 2002) S. Licht (Ed.): Semiconductor Electrodes and Photoelectrochemistry (Wiley-VCH, Weinheim 2002)
[14]
Zurück zum Zitat M. Archer, A. Nozik (Eds.): Nanostructured and Photoelectrochemical Systems for Solar Photon Conversion, Vol. 3 (World Scientific, Singapore 2008) M. Archer, A. Nozik (Eds.): Nanostructured and Photoelectrochemical Systems for Solar Photon Conversion, Vol. 3 (World Scientific, Singapore 2008)
[15]
Zurück zum Zitat K. Rajeshwar, S. Licht, R. McConnell (Eds.): The Solar Generation of Hydrogen: Towards a Renewable Energy Future (Springer, New York 2008) K. Rajeshwar, S. Licht, R. McConnell (Eds.): The Solar Generation of Hydrogen: Towards a Renewable Energy Future (Springer, New York 2008)
[16]
Zurück zum Zitat L. Vayssieres: Solar hydrogen and nanotechnology, SPIE Proc. 6340, 641–664 (2010) L. Vayssieres: Solar hydrogen and nanotechnology, SPIE Proc. 6340, 641–664 (2010)
[17]
Zurück zum Zitat S. Licht, G. Hodes, R. Tenne, J. Manassen: A light variation insensitive high efficiency solar cell, Nature 326, 863–864 (1987)CrossRef S. Licht, G. Hodes, R. Tenne, J. Manassen: A light variation insensitive high efficiency solar cell, Nature 326, 863–864 (1987)CrossRef
[18]
Zurück zum Zitat R. Tenne, G. Hodes: Improved efficiency of CdSe photoanodes by photoelectrochemical etching, Appl. Phys. Lett. 37, 428–430 (1980)CrossRef R. Tenne, G. Hodes: Improved efficiency of CdSe photoanodes by photoelectrochemical etching, Appl. Phys. Lett. 37, 428–430 (1980)CrossRef
[19]
Zurück zum Zitat S. Licht: A description of energy conversion in photoelectrochemical solar cells, Nature 330, 148–151 (1987)CrossRef S. Licht: A description of energy conversion in photoelectrochemical solar cells, Nature 330, 148–151 (1987)CrossRef
[20]
Zurück zum Zitat S. Licht, D. Peramunage: Efficient photoelectrochemical solar cells from electrolyte modification, Nature 345, 330–333 (1990)CrossRef S. Licht, D. Peramunage: Efficient photoelectrochemical solar cells from electrolyte modification, Nature 345, 330–333 (1990)CrossRef
[21]
Zurück zum Zitat S. Licht: Multiple bandgap semiconductorelectrolyte solar energy conversion, J. Phys. Chem. B 105, 6281–6294 (2001)CrossRef S. Licht: Multiple bandgap semiconductorelectrolyte solar energy conversion, J. Phys. Chem. B 105, 6281–6294 (2001)CrossRef
[22]
Zurück zum Zitat H. Tributsch: Reaction of excited chlorophyll molecules at electrodes and in photosynthesis, Photochem. Photobiol. 16(4), 261–269 (1972)CrossRef H. Tributsch: Reaction of excited chlorophyll molecules at electrodes and in photosynthesis, Photochem. Photobiol. 16(4), 261–269 (1972)CrossRef
[23]
Zurück zum Zitat H. Tsubomura, M. Matsumura, Y. Nomura, T. Amamiya: Dye sensitised zinc oxide: Aqueous electrolyte: Platinum photocell, Nature 261, 402–403 (1976)CrossRef H. Tsubomura, M. Matsumura, Y. Nomura, T. Amamiya: Dye sensitised zinc oxide: Aqueous electrolyte: Platinum photocell, Nature 261, 402–403 (1976)CrossRef
[24]
Zurück zum Zitat B. O’Regan, M. Grätzel: A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films, Nature 353, 737–740 (1991)CrossRef B. O’Regan, M. Grätzel: A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films, Nature 353, 737–740 (1991)CrossRef
[25]
Zurück zum Zitat D. Wei: Dye sensitized solar cells, Int. J. Mol. Sci. 11, 1103–1113 (2010)CrossRef D. Wei: Dye sensitized solar cells, Int. J. Mol. Sci. 11, 1103–1113 (2010)CrossRef
[26]
Zurück zum Zitat S. Licht: Efficient solar generation of hydrogen fuel – A fundamental analysis, Electrochem. Commun. 4, 789–794 (2002) S. Licht: Efficient solar generation of hydrogen fuel – A fundamental analysis, Electrochem. Commun. 4, 789–794 (2002)
[27]
Zurück zum Zitat S. Licht: Electrochemical potential tuned solar water splitting, Chem. Commun. 2006, 3006–3007 (2003)CrossRef S. Licht: Electrochemical potential tuned solar water splitting, Chem. Commun. 2006, 3006–3007 (2003)CrossRef
[28]
Zurück zum Zitat S. Licht: STEP (solar thermal electrochemical photo) generation of energetic molecules: A solar chemical process to end anthropogenic global warming, J. Phys. Chem. C 113, 16283–16292 (2009)CrossRef S. Licht: STEP (solar thermal electrochemical photo) generation of energetic molecules: A solar chemical process to end anthropogenic global warming, J. Phys. Chem. C 113, 16283–16292 (2009)CrossRef
[29]
Zurück zum Zitat S. Licht: Optimizing photoelectrochemical solar energy conversion: Multiple bandgap and solution phase phenomenon. In: Semiconductor Electrodes and Photoelectrochemistry, ed. by S. Licht (Wiley-VCH, Weinheim 2002), Chap. 4.4 S. Licht: Optimizing photoelectrochemical solar energy conversion: Multiple bandgap and solution phase phenomenon. In: Semiconductor Electrodes and Photoelectrochemistry, ed. by S. Licht (Wiley-VCH, Weinheim 2002), Chap. 4.4
[30]
Zurück zum Zitat S. Licht, D. Peramunage: Rational electrolyte modification of n-CdSe/([KFe(CN)6]3-/2-) photoelectrochemistry, J. Electrochem. Soc. 139, L23–L26 (1992)CrossRef S. Licht, D. Peramunage: Rational electrolyte modification of n-CdSe/([KFe(CN)6]3-/2-) photoelectrochemistry, J. Electrochem. Soc. 139, L23–L26 (1992)CrossRef
[31]
Zurück zum Zitat S. Licht, B. Wang, T. Soga, M. Umeno: Light invariant, efficient, multiple bandgap AlGaAs/Si/metal hydride solar cell, Appl. Phys. Lett. 74, 4055–4057 (1999)CrossRef S. Licht, B. Wang, T. Soga, M. Umeno: Light invariant, efficient, multiple bandgap AlGaAs/Si/metal hydride solar cell, Appl. Phys. Lett. 74, 4055–4057 (1999)CrossRef
[32]
Zurück zum Zitat B. Wang, S. Licht, T. Soga, M. Umeno: Stable cycling behavior of the light invariant AlGaAs/Si/metal hydride solar cell, Sol. Energy Mater. Sol. Cells 64, 311–320 (2000)CrossRef B. Wang, S. Licht, T. Soga, M. Umeno: Stable cycling behavior of the light invariant AlGaAs/Si/metal hydride solar cell, Sol. Energy Mater. Sol. Cells 64, 311–320 (2000)CrossRef
[33]
Zurück zum Zitat S. Licht, G. Hodes: Photoelectrochemical storage cells. In: Nanostructured and Photochemical Systems for Solar Photon Conversion, Vol. 3, ed. by M. Archer, A. Nozik (World Scientific, Singapore 2008), Chap. 10 S. Licht, G. Hodes: Photoelectrochemical storage cells. In: Nanostructured and Photochemical Systems for Solar Photon Conversion, Vol. 3, ed. by M. Archer, A. Nozik (World Scientific, Singapore 2008), Chap. 10
[34]
Zurück zum Zitat H. Snaith, A. Moule, C. Klein, K. Meerholz, R.H. Friend, M. Grätzel: Efficiency enhancements in solid-state hybrid solar cells via reduced charge recombination and increased light capture, Nano Lett. 7, 3372–3376 (2007)CrossRef H. Snaith, A. Moule, C. Klein, K. Meerholz, R.H. Friend, M. Grätzel: Efficiency enhancements in solid-state hybrid solar cells via reduced charge recombination and increased light capture, Nano Lett. 7, 3372–3376 (2007)CrossRef
[35]
Zurück zum Zitat M.K. Naseeruddin, M. Grätzel: Dye-sensitized regenerative solar cells. In: Semiconductor Electrodes and Photoelectrochemistry, ed. by S. Licht (Wiley-VCH, Weinheim 2002), Chap. 5.2 M.K. Naseeruddin, M. Grätzel: Dye-sensitized regenerative solar cells. In: Semiconductor Electrodes and Photoelectrochemistry, ed. by S. Licht (Wiley-VCH, Weinheim 2002), Chap. 5.2
[36]
Zurück zum Zitat J. Nelson: Charge transport in dye-sensitized systems. In: Semiconductor Electrodes and Photoelectrochemistry, ed. by S. Licht (Wiley-VCH, Weinheim 2002), Chap. 5.3 J. Nelson: Charge transport in dye-sensitized systems. In: Semiconductor Electrodes and Photoelectrochemistry, ed. by S. Licht (Wiley-VCH, Weinheim 2002), Chap. 5.3
[37]
Zurück zum Zitat K. Uzaki, T. Nishimura, J. Usagawa, S. Hayase, M. Kono, Y. Yamaguchi: Dye-sensitized solar cells consisting of 3D-electrodes – A review: Aiming at high efficiency from the view point of light harvesting and charge collection, J. Solar Energy Eng.-Trans. ASME 132, 021204 (2010)CrossRef K. Uzaki, T. Nishimura, J. Usagawa, S. Hayase, M. Kono, Y. Yamaguchi: Dye-sensitized solar cells consisting of 3D-electrodes – A review: Aiming at high efficiency from the view point of light harvesting and charge collection, J. Solar Energy Eng.-Trans. ASME 132, 021204 (2010)CrossRef
[38]
Zurück zum Zitat J.H. Wu, Z. Lan, S.C. Hao, P. Li, J. Lin, M. Huang, L. Fang, Y. Huang: Progress on the electrolytes for dye-sensitized solar cells, Pure Appl. Chem. 80, 2241–2258 (2008) J.H. Wu, Z. Lan, S.C. Hao, P. Li, J. Lin, M. Huang, L. Fang, Y. Huang: Progress on the electrolytes for dye-sensitized solar cells, Pure Appl. Chem. 80, 2241–2258 (2008)
[39]
Zurück zum Zitat T.W. Hamann, R.A. Jensen, A.B.F. Martinson, H. Van Ryswykac, J.T. Hupp: Advancing beyond current generation dye-sensitized solar cells, Energy Environ. Sci. 1, 66–78 (2008)CrossRef T.W. Hamann, R.A. Jensen, A.B.F. Martinson, H. Van Ryswykac, J.T. Hupp: Advancing beyond current generation dye-sensitized solar cells, Energy Environ. Sci. 1, 66–78 (2008)CrossRef
[40]
Zurück zum Zitat B. Miller, S. Licht, M.E. Orazem, P.C. Searson: Photoelectrochemical systems, Crit. Rev. Surf. Chem. 3, 29 (1994) B. Miller, S. Licht, M.E. Orazem, P.C. Searson: Photoelectrochemical systems, Crit. Rev. Surf. Chem. 3, 29 (1994)
[41]
Zurück zum Zitat C.H. Henry: Limiting efficiencies of ideal single and multiple energy gap terrestrial solar cells, J. Appl. Phys. 51, 4494–4500 (1980)CrossRef C.H. Henry: Limiting efficiencies of ideal single and multiple energy gap terrestrial solar cells, J. Appl. Phys. 51, 4494–4500 (1980)CrossRef
[42]
Zurück zum Zitat D.J. Friedman, S.R. Kurtz, K. Bertness, A.E. Kibbler, C. Kramer, J.M. Olsen, D.L. King, B.R. Hansen, J.K. Snyder: 30.2% efficient GaInP/GaAs monolithic two-terminal tandem concentrator cell, Progr. Photovolt. 3, 47–50 (1995)CrossRef D.J. Friedman, S.R. Kurtz, K. Bertness, A.E. Kibbler, C. Kramer, J.M. Olsen, D.L. King, B.R. Hansen, J.K. Snyder: 30.2% efficient GaInP/GaAs monolithic two-terminal tandem concentrator cell, Progr. Photovolt. 3, 47–50 (1995)CrossRef
[43]
Zurück zum Zitat J.P. Benner, J.M. Olson, T.J. Coutts: Recent advances in high-efficiency solar cells, Adv. Solar Energy 7, 125–165 (1992) J.P. Benner, J.M. Olson, T.J. Coutts: Recent advances in high-efficiency solar cells, Adv. Solar Energy 7, 125–165 (1992)
[44]
Zurück zum Zitat M.A. Green, K. Emery, K. Bucher, D.L. King, S. Igari: Solar cell efficiency tables (version 8), Progr. Photovolt. 4, 321–325 (1996)CrossRef M.A. Green, K. Emery, K. Bucher, D.L. King, S. Igari: Solar cell efficiency tables (version 8), Progr. Photovolt. 4, 321–325 (1996)CrossRef
[45]
Zurück zum Zitat T. Soga, T. Kato, M. Yang, M. Umeno, T. Jimbo: High efficiency AIGaAs/Si monolithic tandem solar cell grown by metalorganic chemical vapor deposition, J. Appl. Phys. 78, 4196–4199 (1995)CrossRef T. Soga, T. Kato, M. Yang, M. Umeno, T. Jimbo: High efficiency AIGaAs/Si monolithic tandem solar cell grown by metalorganic chemical vapor deposition, J. Appl. Phys. 78, 4196–4199 (1995)CrossRef
[46]
Zurück zum Zitat R.R. King, D.C. Law, K.M. Edmondson, C.M. Fetzer, G.S. Kinsey, H. Yoon, R.A. Sherif, N.H. Karam: 40% efficient metamorphic GaInP/GaInAs/Ge multijunction solar cells, Appl. Phys. Lett. 90, 183516–183518 (2007)CrossRef R.R. King, D.C. Law, K.M. Edmondson, C.M. Fetzer, G.S. Kinsey, H. Yoon, R.A. Sherif, N.H. Karam: 40% efficient metamorphic GaInP/GaInAs/Ge multijunction solar cells, Appl. Phys. Lett. 90, 183516–183518 (2007)CrossRef
[47]
Zurück zum Zitat N. Alonso-Vante, H. Colell, U. Stimming, H. Tributsch: Anomalous low-temperature kinetic effects for oxygen evolution on ruthenium dioxide and platinum electrodes, J. Phys. Chem. 97, 7381–7384 (1993)CrossRef N. Alonso-Vante, H. Colell, U. Stimming, H. Tributsch: Anomalous low-temperature kinetic effects for oxygen evolution on ruthenium dioxide and platinum electrodes, J. Phys. Chem. 97, 7381–7384 (1993)CrossRef
[48]
Zurück zum Zitat S. Licht: Efficient solar-driven synthesis, carbon capture, and desalinization, STEP: Solar thermal electrochemical production of fuels, metals, bleach, Adv. Mater. 47, 5592–5612 (2011)CrossRef S. Licht: Efficient solar-driven synthesis, carbon capture, and desalinization, STEP: Solar thermal electrochemical production of fuels, metals, bleach, Adv. Mater. 47, 5592–5612 (2011)CrossRef
[49]
Zurück zum Zitat S. Licht, H. Wu, C. Hettige, B. Wang, J. Lau, J. Asercion, J. Stuart: STEP cement: Solar thermal electrochemical production of CaO without CO2 emission, Chem. Commun. 48, 6019–6602 (2012)CrossRef S. Licht, H. Wu, C. Hettige, B. Wang, J. Lau, J. Asercion, J. Stuart: STEP cement: Solar thermal electrochemical production of CaO without CO2 emission, Chem. Commun. 48, 6019–6602 (2012)CrossRef
[50]
Zurück zum Zitat B. Cui, S. Licht: Critical STEP advances for sustainable iron production, Green Chem. 113, 881–884 (2013)CrossRef B. Cui, S. Licht: Critical STEP advances for sustainable iron production, Green Chem. 113, 881–884 (2013)CrossRef
[51]
Zurück zum Zitat S. Licht: Solar water splitting to generate hydrogen fuel: Photothermal electrochemical analysis, J. Phys. Chem. B 107(18), 4253–4260 (2003)CrossRef S. Licht: Solar water splitting to generate hydrogen fuel: Photothermal electrochemical analysis, J. Phys. Chem. B 107(18), 4253–4260 (2003)CrossRef
[52]
Zurück zum Zitat J. Ren, F.-F. Li, J. Lau, L. Gonzalez-Urbina, S. Licht: One-pot synthesis of carbon nanofibers from CO2, Nano Lett. 15, 6142–6148 (2015)CrossRef J. Ren, F.-F. Li, J. Lau, L. Gonzalez-Urbina, S. Licht: One-pot synthesis of carbon nanofibers from CO2, Nano Lett. 15, 6142–6148 (2015)CrossRef
[53]
Zurück zum Zitat F.-F. Li, S. Liu, B. Cui, J. Lau, J. Stuart, S. Licht: A one-pot synthesis of hydrogen and carbon fuels from water and carbon dioxide, Adv. Energy Mat. 7(7), 1401791–1401791 (2015)CrossRef F.-F. Li, S. Liu, B. Cui, J. Lau, J. Stuart, S. Licht: A one-pot synthesis of hydrogen and carbon fuels from water and carbon dioxide, Adv. Energy Mat. 7(7), 1401791–1401791 (2015)CrossRef
[54]
Zurück zum Zitat F.-F. Li, J. Lau, S. Licht: Sungas instead of syngas: Efficient co-production of CO and H2 from a single beam of sunlight, Adv. Sci. (2015), doi:10.1002/advs.201500260 F.-F. Li, J. Lau, S. Licht: Sungas instead of syngas: Efficient co-production of CO and H2 from a single beam of sunlight, Adv. Sci. (2015), doi:10.​1002/​advs.​201500260
[55]
Zurück zum Zitat J. Ren, J. Lau, M. Lefler, S. Licht: The minimum electrolytic energy needed to convert carbon dioxide by electrolysis in carbonate melts, J. Phys. Chem. C 119, 23342–23349 (2016)CrossRef J. Ren, J. Lau, M. Lefler, S. Licht: The minimum electrolytic energy needed to convert carbon dioxide by electrolysis in carbonate melts, J. Phys. Chem. C 119, 23342–23349 (2016)CrossRef
[56]
Zurück zum Zitat Y. Zhu, H. Wang, B. Wang, X. Liu, H. Wu, S. Licht: Solar thermoelectric field photocatlysis for efficient organic synthesis exemplified by toluene tobBenzoic acid, Appl. Cat. B 193, 151–159 (2016)CrossRef Y. Zhu, H. Wang, B. Wang, X. Liu, H. Wu, S. Licht: Solar thermoelectric field photocatlysis for efficient organic synthesis exemplified by toluene tobBenzoic acid, Appl. Cat. B 193, 151–159 (2016)CrossRef
[57]
Zurück zum Zitat S. Licht, A. Douglas, J. Ren, R. Carter, M.M. Lefler, C.L. Pint: Carbon nanotubes produced from ambient carbon dioxide for environmentally sustainable lithium-ion and sodium-ion battery anodes, ACS Cent. Sci. 2, 162–168 (2016)CrossRef S. Licht, A. Douglas, J. Ren, R. Carter, M.M. Lefler, C.L. Pint: Carbon nanotubes produced from ambient carbon dioxide for environmentally sustainable lithium-ion and sodium-ion battery anodes, ACS Cent. Sci. 2, 162–168 (2016)CrossRef
[58]
Zurück zum Zitat S. Licht, B. Wang, S. Mukerji, T. Soga, M. Umeno, H. Tributsch: Over 18% solar energy conversion to generation of hydrogen fuel; theory and experiment for efficient solar water splitting, Int. J. Hydrogen Energy 280, 425–659 (1998) S. Licht, B. Wang, S. Mukerji, T. Soga, M. Umeno, H. Tributsch: Over 18% solar energy conversion to generation of hydrogen fuel; theory and experiment for efficient solar water splitting, Int. J. Hydrogen Energy 280, 425–659 (1998)
[59]
Zurück zum Zitat S. Licht, O. Chitayat, H. Bergmann, A. Dick, H. Ayub, S. Ghosh: Efficient STEP (solar thermal electrochemical photo) production of hydrogen – An economic assessment, Int. J. Hydrogen Energy 35, 10867–10882 (2010)CrossRef S. Licht, O. Chitayat, H. Bergmann, A. Dick, H. Ayub, S. Ghosh: Efficient STEP (solar thermal electrochemical photo) production of hydrogen – An economic assessment, Int. J. Hydrogen Energy 35, 10867–10882 (2010)CrossRef
[61]
Zurück zum Zitat J. Ng, X. Zhang, T. Zhang, J. Pan, A. Du Jian-Hong, D.D. Sun: Construction of self-organized free-standing TiO2 nanotube arrays for effective disinfection of drinking water, J. Chem. Technol. Biotechnol. 85(8), 1061–1066 (2010)CrossRef J. Ng, X. Zhang, T. Zhang, J. Pan, A. Du Jian-Hong, D.D. Sun: Construction of self-organized free-standing TiO2 nanotube arrays for effective disinfection of drinking water, J. Chem. Technol. Biotechnol. 85(8), 1061–1066 (2010)CrossRef
[62]
Zurück zum Zitat S. Licht, F. Forouzan: Solution modified n-GaAs/Aqueous polyselenide photoelectrochemistry, J. Electrochem. Soc. 142, 1539–1545 (1995)CrossRef S. Licht, F. Forouzan: Solution modified n-GaAs/Aqueous polyselenide photoelectrochemistry, J. Electrochem. Soc. 142, 1539–1545 (1995)CrossRef
[63]
Zurück zum Zitat C.P. Rhodes, A. Cisar, H. Lee, Y. Fu, A. Anderson, A. Gonzales-Martin: Book of Abstracts, 215-th Electrochem. Soc. Meet., San Francisco (2008), abstract #398 C.P. Rhodes, A. Cisar, H. Lee, Y. Fu, A. Anderson, A. Gonzales-Martin: Book of Abstracts, 215-th Electrochem. Soc. Meet., San Francisco (2008), abstract #398
Metadaten
Titel
Photoelectrochemical Conversion Processes
verfasst von
Stuart Licht
Copyright-Jahr
2017
Verlag
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-662-46657-5_24