Skip to main content

2017 | OriginalPaper | Buchkapitel

23. Energy Conversion Based on Bio(electro)catalysts

verfasst von : Tanja Vidaković-Koch

Erschienen in: Springer Handbook of Electrochemical Energy

Verlag: Springer Berlin Heidelberg

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Redox enzymes can be efficiently coupled with an electrode surface giving prospect of highly efficient and selective bio(electrochemical) transformations for energy conversion and/or production of commodities or fine chemicals. One example is glucose oxidase that immobilized on the electrode surface and in the presence of glucose and oxygen reduction cathode generates electricity and D-glucono-1,5-lactone with applications in different industries. Other examples might comprise whole enzymatic cascades performing complex sequences of biochemical reactions, turning, for example, such inert and environmentally polluting substances (like CO2) into useful commodities (e. g., methanol). These processes have a significant potential for development of new enzyme-based production systems, with electrochemistry playing an important role, especially regarding electrochemical regeneration of redox enzymes (redox cofactors). Although the electrochemical regeneration is feasible, its efficiency is still too low to be considered competitive for industrial applications. In this contribution we consider some important aspects of electrochemical regeneration of enzymes and common co-factors. At first, working principles of two typical representatives of bioelectrochemical systems will be described, followed by a short discussion of so-called cell free systems and their relationship to bioelectrochemical systems. For practical development of bioelectrochemical systems, the thermodynamics of related processes as well as kinetics are important. We give some examples of enzymes showing reversible electrode behavior, as an inspiration. Mathematical modeling will play a significant role in the design and optimization of bioelectrochemical systems. For this reason, we show how nonlinear mathematical models for studying the kinetics ofenzymatic processes can be developed. Finally, we discuss some practical aspects of biotransformation with redox enzymes, including examples of electron transfer mechanisms, enzyme adaptation on process conditions, development of electrodes etc.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat C.E. Hodgman, M.C. Jewett: Cell-free synthetic biology: Thinking outside the cell, Meta. Eng. 14(3), 261–269 (2012)CrossRef C.E. Hodgman, M.C. Jewett: Cell-free synthetic biology: Thinking outside the cell, Meta. Eng. 14(3), 261–269 (2012)CrossRef
Zurück zum Zitat A. Bar-Even, E. Noor, N.E. Lewis, R. Miloa: Design and analysis of synthetic carbon fixation pathways, Proc. Natl. Acad. Sci. U.S.A 107(19), 8889–8894 (2010)CrossRef A. Bar-Even, E. Noor, N.E. Lewis, R. Miloa: Design and analysis of synthetic carbon fixation pathways, Proc. Natl. Acad. Sci. U.S.A 107(19), 8889–8894 (2010)CrossRef
Zurück zum Zitat C.A. Raines: The Calvin cycle revisited, Photosynth. Res. 75(1), 1–10 (2003)CrossRef C.A. Raines: The Calvin cycle revisited, Photosynth. Res. 75(1), 1–10 (2003)CrossRef
Zurück zum Zitat M.J. Lukey, A. Parkin, M.M. Roessler, B.J. Murphy, J. Harmer, T. Palmer, F. Sargent, F.A. Armstrong: How Escherichia coli is equipped to oxidize hydrogen under different redox conditions, J. Biol. Chem. 285(6), 3928–3938 (2010)CrossRef M.J. Lukey, A. Parkin, M.M. Roessler, B.J. Murphy, J. Harmer, T. Palmer, F. Sargent, F.A. Armstrong: How Escherichia coli is equipped to oxidize hydrogen under different redox conditions, J. Biol. Chem. 285(6), 3928–3938 (2010)CrossRef
Zurück zum Zitat A. Abou Hamdan, S. Dementin, P.-P. Liebgott, O. Gutierrez-Sanz, P. Richaud, A.L. De Lacey, M. Rousset, P. Bertrand, L. Cournac, C. Léger: Understanding and tuning the catalytic bias of hydrogenase, J. Am. Chem. Soc. 134(20), 8368–8371 (2012)CrossRef A. Abou Hamdan, S. Dementin, P.-P. Liebgott, O. Gutierrez-Sanz, P. Richaud, A.L. De Lacey, M. Rousset, P. Bertrand, L. Cournac, C. Léger: Understanding and tuning the catalytic bias of hydrogenase, J. Am. Chem. Soc. 134(20), 8368–8371 (2012)CrossRef
Zurück zum Zitat C. Léger, S.J. Elliott, K.R. Hoke, L.J.C. Jeuken, A.K. Jones, F.A. Armstrong: Enzyme electrokinetics: Using protein film voltammetry to investigate redox enzymes and their mechanisms, Biochemistry 42(29), 8653–8662 (2003)CrossRef C. Léger, S.J. Elliott, K.R. Hoke, L.J.C. Jeuken, A.K. Jones, F.A. Armstrong: Enzyme electrokinetics: Using protein film voltammetry to investigate redox enzymes and their mechanisms, Biochemistry 42(29), 8653–8662 (2003)CrossRef
Zurück zum Zitat F.A. Armstrong, J. Hirst: Reversibility and efficiency in electrocatalytic energy conversion and lessons from enzymes, Proc. Natl. Acad. Sci. U.S.A. 108(34), 14049–14054 (2011)CrossRef F.A. Armstrong, J. Hirst: Reversibility and efficiency in electrocatalytic energy conversion and lessons from enzymes, Proc. Natl. Acad. Sci. U.S.A. 108(34), 14049–14054 (2011)CrossRef
Zurück zum Zitat A.A. Karyakin, Y.N. Ivanova, E.E. Karyakina: Equilibrium (NAD(+)/NADH) potential on poly (Neutral Red) modified electrode, Electrochem. Commun. 5(8), 677–680 (2003)CrossRef A.A. Karyakin, Y.N. Ivanova, E.E. Karyakina: Equilibrium (NAD(+)/NADH) potential on poly (Neutral Red) modified electrode, Electrochem. Commun. 5(8), 677–680 (2003)CrossRef
Zurück zum Zitat G.E. Briggs, J.B.S. Haldane: A note on the kinetics of enzyme action, Biochem. J. 19(2), 338–339 (1925)CrossRef G.E. Briggs, J.B.S. Haldane: A note on the kinetics of enzyme action, Biochem. J. 19(2), 338–339 (1925)CrossRef
Zurück zum Zitat S. Fletcher: Tafel slopes from first principles, J. Solid State Electrochem. 13(4), 537–549 (2009)CrossRef S. Fletcher: Tafel slopes from first principles, J. Solid State Electrochem. 13(4), 537–549 (2009)CrossRef
Zurück zum Zitat R. Andreu, E.E. Ferapontova, L. Gorton, J.J. Calvente: Direct electron transfer kinetics in horseradish peroxidase electrocatalysis, J. Phys. Chem. B 111(2), 469–477 (2007)CrossRef R. Andreu, E.E. Ferapontova, L. Gorton, J.J. Calvente: Direct electron transfer kinetics in horseradish peroxidase electrocatalysis, J. Phys. Chem. B 111(2), 469–477 (2007)CrossRef
Zurück zum Zitat C. Léger, A.K. Jones, S.P.J. Albracht, F.A. Armstrong: Effect of a dispersion of interfacial electron transfer rates on steady state catalytic electron transport in NiFe-hydrogenase and other enzymes, J. Phys. Chem. B 106(50), 13058–13063 (2002)CrossRef C. Léger, A.K. Jones, S.P.J. Albracht, F.A. Armstrong: Effect of a dispersion of interfacial electron transfer rates on steady state catalytic electron transport in NiFe-hydrogenase and other enzymes, J. Phys. Chem. B 106(50), 13058–13063 (2002)CrossRef
Zurück zum Zitat T.R. Vidaković-Koch, V.V. Panić, M. Andrić, M. Petkovska, K. Sundmacher: Nonlinear frequency response nalysis of the ferrocyanide oxidation kinetics. Part I. A theoretical analysis, J. Phys. Chem. C 115(35), 17341–17351 (2011)CrossRef T.R. Vidaković-Koch, V.V. Panić, M. Andrić, M. Petkovska, K. Sundmacher: Nonlinear frequency response nalysis of the ferrocyanide oxidation kinetics. Part I. A theoretical analysis, J. Phys. Chem. C 115(35), 17341–17351 (2011)CrossRef
Zurück zum Zitat T.L.G. Ruzgas, J.G.M.-V. Emnéus: Kinetic-models of horseradish-peroxidase action on a graphite electrode, J. Electroanal. Chem. 391(1/2), 41–49 (1995)CrossRef T.L.G. Ruzgas, J.G.M.-V. Emnéus: Kinetic-models of horseradish-peroxidase action on a graphite electrode, J. Electroanal. Chem. 391(1/2), 41–49 (1995)CrossRef
Zurück zum Zitat E.E. Ferapontova, L. Gorton: Effect of proton donors on direct electron transfer in the system gold electrode-horseradish peroxidase, Electrochem. Commun. 3(12), 767–774 (2001)CrossRef E.E. Ferapontova, L. Gorton: Effect of proton donors on direct electron transfer in the system gold electrode-horseradish peroxidase, Electrochem. Commun. 3(12), 767–774 (2001)CrossRef
Zurück zum Zitat M.S. Mondal, H.A. Fuller, F.A. Armstrong: Direct measurement of the reduction potential of catalytically active cytochrome c peroxidase compound I: Voltammetric detection of a reversible, cooperative two-electron transfer reaction, J. Am. Chem. Soc. 118(1), 263–264 (1996)CrossRef M.S. Mondal, H.A. Fuller, F.A. Armstrong: Direct measurement of the reduction potential of catalytically active cytochrome c peroxidase compound I: Voltammetric detection of a reversible, cooperative two-electron transfer reaction, J. Am. Chem. Soc. 118(1), 263–264 (1996)CrossRef
Zurück zum Zitat M.S. Mondal, D.B. Goodin, F.A. Armstrong: Simultaneous voltammetric comparisons of reduction potentials, reactivities, and stabilities of the high-potential catalytic states of wild-type and distal-pocket mutant (W51F) yeast cytochrome c peroxidase, J. Am. Chem. Soc. 120(25), 6270–6276 (1998)CrossRef M.S. Mondal, D.B. Goodin, F.A. Armstrong: Simultaneous voltammetric comparisons of reduction potentials, reactivities, and stabilities of the high-potential catalytic states of wild-type and distal-pocket mutant (W51F) yeast cytochrome c peroxidase, J. Am. Chem. Soc. 120(25), 6270–6276 (1998)CrossRef
Zurück zum Zitat T. Vidaković-Koch, V.K. Mittal, M. Varničić, Q.N. Do Thi, K. Sundmacher: Application of electrochemical impedance spectroscopy for studying of enzyme kinetics, Electrochim. Acta 110, 94–104 (2013)CrossRef T. Vidaković-Koch, V.K. Mittal, M. Varničić, Q.N. Do Thi, K. Sundmacher: Application of electrochemical impedance spectroscopy for studying of enzyme kinetics, Electrochim. Acta 110, 94–104 (2013)CrossRef
Zurück zum Zitat V.V. Panić, T.R. Vidaković-Koch, M. Andrić, M. Petkovska, K. Sundmacher: Nonlinear frequency response analysis of the ferrocyanide oxidation kinetics. Part II. Measurement routine and experimental validation, J. Phys. Chem. C 115(35), 17352–17358 (2011)CrossRef V.V. Panić, T.R. Vidaković-Koch, M. Andrić, M. Petkovska, K. Sundmacher: Nonlinear frequency response analysis of the ferrocyanide oxidation kinetics. Part II. Measurement routine and experimental validation, J. Phys. Chem. C 115(35), 17352–17358 (2011)CrossRef
Zurück zum Zitat B. Bensmann, M. Petkovska, T. Vidaković-Koch, R. Hanke-Rauschenbach, K. Sundmacher: Nonlinear frequency response of electrochemical methanol oxidation kinetics: A theoretical analysis, J. Electrochem. Soc. 157(9), B1279–B1289 (2010)CrossRef B. Bensmann, M. Petkovska, T. Vidaković-Koch, R. Hanke-Rauschenbach, K. Sundmacher: Nonlinear frequency response of electrochemical methanol oxidation kinetics: A theoretical analysis, J. Electrochem. Soc. 157(9), B1279–B1289 (2010)CrossRef
Zurück zum Zitat F.A. Armstrong, N.A. Belsey, J.A. Cracknell, G. Goldet, A. Parkin, E. Reisner, K.A. Vincent, A.F. Wait: Dynamic electrochemical investigations of hydrogen oxidation and production by enzymes and implications for future technology, Chem. Soc. Rev. 38(1), 36–51 (2009)CrossRef F.A. Armstrong, N.A. Belsey, J.A. Cracknell, G. Goldet, A. Parkin, E. Reisner, K.A. Vincent, A.F. Wait: Dynamic electrochemical investigations of hydrogen oxidation and production by enzymes and implications for future technology, Chem. Soc. Rev. 38(1), 36–51 (2009)CrossRef
Zurück zum Zitat E. Lojou: Hydrogenases as catalysts for fuel cells: Strategies for efficient immobilization at electrode interfaces, Electrochim. Acta 56(28), 10385–10397 (2011)CrossRef E. Lojou: Hydrogenases as catalysts for fuel cells: Strategies for efficient immobilization at electrode interfaces, Electrochim. Acta 56(28), 10385–10397 (2011)CrossRef
Zurück zum Zitat K.A. Vincent, A. Parkin, O. Lenz, S.P.J. Albracht, J.C. Fontecilla-Camps, R. Cammack, B. Friedrich, F.A. Armstrong: Electrochemical definitions of O2 sensitivity and oxidative inactivation in hydrogenases, J. Am. Chem. Soc. 127(51), 18179–18189 (2005)CrossRef K.A. Vincent, A. Parkin, O. Lenz, S.P.J. Albracht, J.C. Fontecilla-Camps, R. Cammack, B. Friedrich, F.A. Armstrong: Electrochemical definitions of O2 sensitivity and oxidative inactivation in hydrogenases, J. Am. Chem. Soc. 127(51), 18179–18189 (2005)CrossRef
Zurück zum Zitat O. Rüdiger, J.M. Abad, E.C. Hatchikian, V.M. Fernandez, A.L. De Lacey: Oriented immobilization of Desulfovibrio gigas hydrogenase onto carbon electrodes by covalent bonds for nonmediated oxidation of H2, J. Am. Chem. Soc. 127(46), 16008–16009 (2005)CrossRef O. Rüdiger, J.M. Abad, E.C. Hatchikian, V.M. Fernandez, A.L. De Lacey: Oriented immobilization of Desulfovibrio gigas hydrogenase onto carbon electrodes by covalent bonds for nonmediated oxidation of H2, J. Am. Chem. Soc. 127(46), 16008–16009 (2005)CrossRef
Zurück zum Zitat A. Ciaccafava, P. Infossi, M. Ilbert, M. Guiral, S. Lecomte, M.T. Giudici-Orticoni, E. Lojou: Electrochemistry, AFM, and PM-IRRA spectroscopy of immobilized hydrogenase: Role of a hydrophobic helix in enzyme orientation for efficient H2 oxidation, Angew. Chem. Int. Ed. 51(4), 953–956 (2012)CrossRef A. Ciaccafava, P. Infossi, M. Ilbert, M. Guiral, S. Lecomte, M.T. Giudici-Orticoni, E. Lojou: Electrochemistry, AFM, and PM-IRRA spectroscopy of immobilized hydrogenase: Role of a hydrophobic helix in enzyme orientation for efficient H2 oxidation, Angew. Chem. Int. Ed. 51(4), 953–956 (2012)CrossRef
Zurück zum Zitat M.A. Alonso-Lomillo, O. Rüdiger, A. Maroto-Valiente, M. Velez, I. Rodríguez-Ramos, F. Javier Muñoz, V.M. Fernández, A.L. De Lacey: Hydrogenase-coated carbon nanotubes for efficient H2 oxidation, Nano Lett. 7(6), 1603–1608 (2007)CrossRef M.A. Alonso-Lomillo, O. Rüdiger, A. Maroto-Valiente, M. Velez, I. Rodríguez-Ramos, F. Javier Muñoz, V.M. Fernández, A.L. De Lacey: Hydrogenase-coated carbon nanotubes for efficient H2 oxidation, Nano Lett. 7(6), 1603–1608 (2007)CrossRef
Zurück zum Zitat E.X.L. Lojou, M.N.C. Brugna, S.M.T.G.-O. Dementin: Biocatalysts for fuel cells: Efficient hydrogenase orientation for H2 oxidation at electrodes modified with carbon nanotubes, J. Biol. Inorg. Chem. 13(7), 1157–1167 (2008)CrossRef E.X.L. Lojou, M.N.C. Brugna, S.M.T.G.-O. Dementin: Biocatalysts for fuel cells: Efficient hydrogenase orientation for H2 oxidation at electrodes modified with carbon nanotubes, J. Biol. Inorg. Chem. 13(7), 1157–1167 (2008)CrossRef
Zurück zum Zitat X. Luo, M. Brugna, P. Tron-Infossi, M.T. Giudici-Orticoni, E. Lojou: Immobilization of the hyperthermophilic hydrogenase from Aquifex aeolicus bacterium onto gold and carbon nanotube electrodes for efficient H2 oxidation, J. Biol. Inorg. Chem. 14(8), 1275–1288 (2009)CrossRef X. Luo, M. Brugna, P. Tron-Infossi, M.T. Giudici-Orticoni, E. Lojou: Immobilization of the hyperthermophilic hydrogenase from Aquifex aeolicus bacterium onto gold and carbon nanotube electrodes for efficient H2 oxidation, J. Biol. Inorg. Chem. 14(8), 1275–1288 (2009)CrossRef
Zurück zum Zitat A.J. Healy, H.A. Reeve, A. Parkin, K.A. Vincent: Electrically conducting particle networks in polymer electrolyte as three-dimensional electrodes for hydrogenase electrocatalysis, Electrochim. Acta 56(28), 10786–10790 (2011)CrossRef A.J. Healy, H.A. Reeve, A. Parkin, K.A. Vincent: Electrically conducting particle networks in polymer electrolyte as three-dimensional electrodes for hydrogenase electrocatalysis, Electrochim. Acta 56(28), 10786–10790 (2011)CrossRef
Zurück zum Zitat R.A. Alberty: Calculation of standard transformed formation properties of biochemical reactants and standard apparent reduction potentials of half reactions, Arc. Biochem. Biophys. 358(1), 25–39 (1998)CrossRef R.A. Alberty: Calculation of standard transformed formation properties of biochemical reactants and standard apparent reduction potentials of half reactions, Arc. Biochem. Biophys. 358(1), 25–39 (1998)CrossRef
Zurück zum Zitat T.M. Iverson, C. Luna-Chavez, G. Cecchini, D.C. Rees: Structure of the Escherichia coli fumarate reductase respiratory complex, Science 284(5422), 1961–1966 (1999)CrossRef T.M. Iverson, C. Luna-Chavez, G. Cecchini, D.C. Rees: Structure of the Escherichia coli fumarate reductase respiratory complex, Science 284(5422), 1961–1966 (1999)CrossRef
Zurück zum Zitat F.L.G. Tasca, W.D.H. Harreither, R.N.G. Ludwig: Comparison of direct and mediated electron transfer for cellobiose dehydrogenase from phanerochaete soridida, Analytical Chem. 81(7), 2791–2798 (2009)CrossRef F.L.G. Tasca, W.D.H. Harreither, R.N.G. Ludwig: Comparison of direct and mediated electron transfer for cellobiose dehydrogenase from phanerochaete soridida, Analytical Chem. 81(7), 2791–2798 (2009)CrossRef
Zurück zum Zitat J. Okuda, T. Yamazaki, M. Fukasawa, N. Kakehi, K. Sode: The application of engineered glucose dehydrogenase to a direct electron-transfer-type continuous glucose monitoring system and a compartmentless biofuel cell, Anal. Lett. 40(3), 431–440 (2007)CrossRef J. Okuda, T. Yamazaki, M. Fukasawa, N. Kakehi, K. Sode: The application of engineered glucose dehydrogenase to a direct electron-transfer-type continuous glucose monitoring system and a compartmentless biofuel cell, Anal. Lett. 40(3), 431–440 (2007)CrossRef
Zurück zum Zitat O. Courjean, F. Gao, N. Mano: Deglycosylation of glucose oxidase for direct and efficient glucose electrooxidation on a glassy carbon electrode, Ange. Chem. Int, Ed. 48(32), 5897–5899 (2009) O. Courjean, F. Gao, N. Mano: Deglycosylation of glucose oxidase for direct and efficient glucose electrooxidation on a glassy carbon electrode, Ange. Chem. Int, Ed. 48(32), 5897–5899 (2009)
Zurück zum Zitat C. Léger, K. Heffron, H.R. Pershad, E. Maklashina, C. Luna-Chavez, G. Cecchini, B.A.C. Ackrell, F.A. Armstrong: Enzyme electrokinetics: Energetics of succinate oxidation by fumarate reductase and succinate dehydrogenase, Biochemistry 40(37), 11234–11245 (2001)CrossRef C. Léger, K. Heffron, H.R. Pershad, E. Maklashina, C. Luna-Chavez, G. Cecchini, B.A.C. Ackrell, F.A. Armstrong: Enzyme electrokinetics: Energetics of succinate oxidation by fumarate reductase and succinate dehydrogenase, Biochemistry 40(37), 11234–11245 (2001)CrossRef
Zurück zum Zitat I. Ivanov, T. Vidakovic-Koch, K. Sundmacher: Recent advances in enzymatic fuel cells: Experiments and modeling, Energies 3(4), 803–846 (2010)CrossRef I. Ivanov, T. Vidakovic-Koch, K. Sundmacher: Recent advances in enzymatic fuel cells: Experiments and modeling, Energies 3(4), 803–846 (2010)CrossRef
Zurück zum Zitat S. Kochius, A.O. Magnusson, F. Hollmann, J. Schrader, D. Holtmann: Immobilized redox mediators for electrochemical NAD(P)(+) regeneration, Appl. Microbiol. Biotechnol. 93(6), 2251–2264 (2012)CrossRef S. Kochius, A.O. Magnusson, F. Hollmann, J. Schrader, D. Holtmann: Immobilized redox mediators for electrochemical NAD(P)(+) regeneration, Appl. Microbiol. Biotechnol. 93(6), 2251–2264 (2012)CrossRef
Zurück zum Zitat N. Mano, F. Mao, W. Shin, T. Chen, A. Heller: A miniature biofuel cell operating at 0.78 V, Chem. Commun. 4, 518–519 (2003)CrossRef N. Mano, F. Mao, W. Shin, T. Chen, A. Heller: A miniature biofuel cell operating at 0.78 V, Chem. Commun. 4, 518–519 (2003)CrossRef
Zurück zum Zitat M.N.X.W. Zafar, C.R.L. Sygmund, D.L.G. Leech: Electron-transfer studies with a new flavin adenine dinucleotide dependent glucose dehydrogenase and osmium polymers of different redox potentials, Anal. Chem. 84(1), 334–341 (2012)CrossRef M.N.X.W. Zafar, C.R.L. Sygmund, D.L.G. Leech: Electron-transfer studies with a new flavin adenine dinucleotide dependent glucose dehydrogenase and osmium polymers of different redox potentials, Anal. Chem. 84(1), 334–341 (2012)CrossRef
Zurück zum Zitat N.A.H. Mano: A miniature membraneless biofuel cell operating at 0.36 V under physiological conditions, J. Electrochem. Soc. 150(8), A1136–A1138 (2003)CrossRef N.A.H. Mano: A miniature membraneless biofuel cell operating at 0.36 V under physiological conditions, J. Electrochem. Soc. 150(8), A1136–A1138 (2003)CrossRef
Zurück zum Zitat N. Mano, F. Mao, A. Heller: A miniature membrane-less biofuel cell operating at +0.60 V under physiological conditions, ChemBioChem 5(12), 1703–1705 (2004)CrossRef N. Mano, F. Mao, A. Heller: A miniature membrane-less biofuel cell operating at +0.60 V under physiological conditions, ChemBioChem 5(12), 1703–1705 (2004)CrossRef
Zurück zum Zitat N. Mano, F. Mao, A. Heller: Characteristics of a miniature compartment-less glucose-O2 biofuel cell and its operation in a living plant, J. Am. Chem. Soc. 125(21), 6588–6594 (2003)CrossRef N. Mano, F. Mao, A. Heller: Characteristics of a miniature compartment-less glucose-O2 biofuel cell and its operation in a living plant, J. Am. Chem. Soc. 125(21), 6588–6594 (2003)CrossRef
Zurück zum Zitat F. Mao, N. Mano, A. Heller: Long tethers binding redox centers to polymer backbones enhance electron transport in enzyme wiring hydrogels, J. Am. Chem. Soc. 125(16), 4951–4957 (2003)CrossRef F. Mao, N. Mano, A. Heller: Long tethers binding redox centers to polymer backbones enhance electron transport in enzyme wiring hydrogels, J. Am. Chem. Soc. 125(16), 4951–4957 (2003)CrossRef
Zurück zum Zitat V. Soukharev, N. Mano, A. Heller: A four-electron O2-electroreduction biocatalyst superior to platinum and a biofuel cell operating at 0.88 V, J. Am. Chem. Soc. 126(27), 8368–8369 (2004)CrossRef V. Soukharev, N. Mano, A. Heller: A four-electron O2-electroreduction biocatalyst superior to platinum and a biofuel cell operating at 0.88 V, J. Am. Chem. Soc. 126(27), 8368–8369 (2004)CrossRef
Zurück zum Zitat F.Y.F. Barrière, D.D.L. Rochefort: Targetting redox polymers as mediators for laccase oxygen reduction in a membrane-less biofuel cell, Electrochem. Commun. 6(3), 237–241 (2004)CrossRef F.Y.F. Barrière, D.D.L. Rochefort: Targetting redox polymers as mediators for laccase oxygen reduction in a membrane-less biofuel cell, Electrochem. Commun. 6(3), 237–241 (2004)CrossRef
Zurück zum Zitat M.N. Zafar, F. Tasca, L. Gorton, E.V. Patridge, J.G. Ferry, N. Gilbert: Tryptophan repressor-binding proteins from Escherichia coli and archaeoglobus fulgidus as new catalysts for 1,4-dihydronicotinamide adenine dinucleotide-dependent amperometric biosensors and biofuel cells, Anal. Chem. 81(10), 4082–4088 (2009)CrossRef M.N. Zafar, F. Tasca, L. Gorton, E.V. Patridge, J.G. Ferry, N. Gilbert: Tryptophan repressor-binding proteins from Escherichia coli and archaeoglobus fulgidus as new catalysts for 1,4-dihydronicotinamide adenine dinucleotide-dependent amperometric biosensors and biofuel cells, Anal. Chem. 81(10), 4082–4088 (2009)CrossRef
Zurück zum Zitat I. Ivanov, T. Vidakovic-Koch, K. Sundmacher: Direct hybrid glucose-oxygen enzymatic fuel cell based on tetrathiafulvalene-tetracyanoquinodimethane charge transfer complex as anodic mediator, J. Power Sources 196(22), 9260–9269 (2011)CrossRef I. Ivanov, T. Vidakovic-Koch, K. Sundmacher: Direct hybrid glucose-oxygen enzymatic fuel cell based on tetrathiafulvalene-tetracyanoquinodimethane charge transfer complex as anodic mediator, J. Power Sources 196(22), 9260–9269 (2011)CrossRef
Zurück zum Zitat L. Brunel, J. Denele, K. Servat, K.B. Kokoh, C. Jolivalt, C. Innocent, M. Cretin, M. Rolland, S. Tingry: Oxygen transport through laccase biocathodes for a membrane-less glucose/O2 biofuel cell, Electrochem. Commun. 9(2), 331–336 (2007)CrossRef L. Brunel, J. Denele, K. Servat, K.B. Kokoh, C. Jolivalt, C. Innocent, M. Cretin, M. Rolland, S. Tingry: Oxygen transport through laccase biocathodes for a membrane-less glucose/O2 biofuel cell, Electrochem. Commun. 9(2), 331–336 (2007)CrossRef
Zurück zum Zitat A. Habrioux, G. Merle, K. Servat, K.B. Kokoh, C. Innocent, M. Cretin, S. Tingry: Concentric glucose/O2 biofuel cell, J. Electroanal. Chem. 622(1), 97–102 (2008)CrossRef A. Habrioux, G. Merle, K. Servat, K.B. Kokoh, C. Innocent, M. Cretin, S. Tingry: Concentric glucose/O2 biofuel cell, J. Electroanal. Chem. 622(1), 97–102 (2008)CrossRef
Zurück zum Zitat G. Merle, A. Habrioux, K. Servat, M. Rolland, C. Innocent, K.B. Kokoh, S. Tingry: Long-term activity of covalent grafted biocatalysts during intermittent use of a glucose/O2 biofuel cell, Electrochim. Acta 54(11), 2998–3003 (2009)CrossRef G. Merle, A. Habrioux, K. Servat, M. Rolland, C. Innocent, K.B. Kokoh, S. Tingry: Long-term activity of covalent grafted biocatalysts during intermittent use of a glucose/O2 biofuel cell, Electrochim. Acta 54(11), 2998–3003 (2009)CrossRef
Zurück zum Zitat I. Ivanov, T. Vidaković-Koch, K. Sundmacher: Alternating electron transfer mechanism in the case of high-performance tetrathiafulvalene–tetracyanoquinodimethane enzymatic electrodes, J. Electroanal. Chem. 690, 68–73 (2013)CrossRef I. Ivanov, T. Vidaković-Koch, K. Sundmacher: Alternating electron transfer mechanism in the case of high-performance tetrathiafulvalene–tetracyanoquinodimethane enzymatic electrodes, J. Electroanal. Chem. 690, 68–73 (2013)CrossRef
Zurück zum Zitat R. Devaux-Basseguy, A. Bergel, M. Comtat: Potential applications of NAD(P)-dependent oxidoreductases in synthesis: A survey, Enzyme Microb. Technol. 20(4), 248–258 (1997)CrossRef R. Devaux-Basseguy, A. Bergel, M. Comtat: Potential applications of NAD(P)-dependent oxidoreductases in synthesis: A survey, Enzyme Microb. Technol. 20(4), 248–258 (1997)CrossRef
Zurück zum Zitat P. Schenkels, S. De Vries, A.J.J. Straathof: Scope and limitations of the use of nicotinoprotein alcohol dehydrogenase for the coenzyme-free production of enantiopure fine-chemicals, Biocatal. Biotransform. 19(3), 191–212 (2001)CrossRef P. Schenkels, S. De Vries, A.J.J. Straathof: Scope and limitations of the use of nicotinoprotein alcohol dehydrogenase for the coenzyme-free production of enantiopure fine-chemicals, Biocatal. Biotransform. 19(3), 191–212 (2001)CrossRef
Zurück zum Zitat W.A. van der Donk, H.M. Zhao: Recent developments in pyridine nucleotide regeneration, Curr. Opin. Biotechnol. 14(4), 421–426 (2003)CrossRef W.A. van der Donk, H.M. Zhao: Recent developments in pyridine nucleotide regeneration, Curr. Opin. Biotechnol. 14(4), 421–426 (2003)CrossRef
Zurück zum Zitat F.A.S. Hollmann: Electrochemical regeneration of oxidoreductases for cell-free biocatalytic redox reactions, Biocatal. Biotransform. 22(2), 63–88 (2004)CrossRef F.A.S. Hollmann: Electrochemical regeneration of oxidoreductases for cell-free biocatalytic redox reactions, Biocatal. Biotransform. 22(2), 63–88 (2004)CrossRef
Zurück zum Zitat Y.B. Zu, R.J. Shannon, J. Hirst: Reversible, electrochemical interconversion of NADH and NAD(+) by the catalytic (I lambda) subcomplex of mitochondrial NADH: Ubiquinone oxidoreductase (complex I), J. Am. Chem. Soc. 125(20), 6020–6021 (2003)CrossRef Y.B. Zu, R.J. Shannon, J. Hirst: Reversible, electrochemical interconversion of NADH and NAD(+) by the catalytic (I lambda) subcomplex of mitochondrial NADH: Ubiquinone oxidoreductase (complex I), J. Am. Chem. Soc. 125(20), 6020–6021 (2003)CrossRef
Zurück zum Zitat M.N. Arechederra, P.K. Addo, S.D. Minteer: Poly(neutral red) as a NAD+ reduction catalyst and a NADH oxidation catalyst: Towards the development of a rechargeable biobattery, Electrochim. Acta 56(3), 1585–1590 (2011)CrossRef M.N. Arechederra, P.K. Addo, S.D. Minteer: Poly(neutral red) as a NAD+ reduction catalyst and a NADH oxidation catalyst: Towards the development of a rechargeable biobattery, Electrochim. Acta 56(3), 1585–1590 (2011)CrossRef
Zurück zum Zitat Y.H. Kim, Y.J. Yoo: Regeneration of the nicotinamide cofactor using a mediator-free electrochemical method with a tin oxide electrode, Enzyme Microb. Technol. 44(3), 129–134 (2009)CrossRef Y.H. Kim, Y.J. Yoo: Regeneration of the nicotinamide cofactor using a mediator-free electrochemical method with a tin oxide electrode, Enzyme Microb. Technol. 44(3), 129–134 (2009)CrossRef
Zurück zum Zitat A.A. Karyakin, E.E. Karyakina, W. Schuhmann, H.L. Schmidt: Electropolymerized azines: Part II. In a search of the best electrocatalyst of NADH oxidation, Electroanalysis 11(8), 553–557 (1999)CrossRef A.A. Karyakin, E.E. Karyakina, W. Schuhmann, H.L. Schmidt: Electropolymerized azines: Part II. In a search of the best electrocatalyst of NADH oxidation, Electroanalysis 11(8), 553–557 (1999)CrossRef
Zurück zum Zitat H. Li, H. Wen, S.C. Barton: NADH oxidation catalyzed by electropolymerized azines on carbon nanotube modified electrodes, Electroanalysis 24(2), 398–406 (2012)CrossRef H. Li, H. Wen, S.C. Barton: NADH oxidation catalyzed by electropolymerized azines on carbon nanotube modified electrodes, Electroanalysis 24(2), 398–406 (2012)CrossRef
Zurück zum Zitat C.W. Narváez Villarrubia, R.A. Rincón, V.K. Radhakrishnan, V. Davis, P. Atanassov: Methylene green electrodeposited on SWNTs-based bucky papers for NADH and l-Malate oxidation, ACS Appl. Mater. Interfaces 3(7), 2402–2409 (2011)CrossRef C.W. Narváez Villarrubia, R.A. Rincón, V.K. Radhakrishnan, V. Davis, P. Atanassov: Methylene green electrodeposited on SWNTs-based bucky papers for NADH and l-Malate oxidation, ACS Appl. Mater. Interfaces 3(7), 2402–2409 (2011)CrossRef
Zurück zum Zitat A. Salimi, M. Izadi, R. Hallaj, S. Soltanian, H. Hadadzadeh: Electrocatalytic reduction of NAD(+) at glassy carbon electrode modified with single-walled carbon nanotubes and Ru(III) complexes, J. Solid State Electrochem. 13(3), 485–496 (2009)CrossRef A. Salimi, M. Izadi, R. Hallaj, S. Soltanian, H. Hadadzadeh: Electrocatalytic reduction of NAD(+) at glassy carbon electrode modified with single-walled carbon nanotubes and Ru(III) complexes, J. Solid State Electrochem. 13(3), 485–496 (2009)CrossRef
Zurück zum Zitat I. Ali, B. Soomro, S. Omanovic: Electrochemical regeneration of NADH on a glassy carbon electrode surface: The influence of electrolysis potential, Electrochem. Commun. 13(6), 562–565 (2011)CrossRef I. Ali, B. Soomro, S. Omanovic: Electrochemical regeneration of NADH on a glassy carbon electrode surface: The influence of electrolysis potential, Electrochem. Commun. 13(6), 562–565 (2011)CrossRef
Zurück zum Zitat I. Ali, A. Gill, S. Omanovic: Direct electrochemical regeneration of the enzymatic cofactor 1,4-NADH employing nano-patterned glassy carbon/Pt and glassy carbon/Ni electrodes, Chem. Eng. J. 188(0), 173–180 (2012)CrossRef I. Ali, A. Gill, S. Omanovic: Direct electrochemical regeneration of the enzymatic cofactor 1,4-NADH employing nano-patterned glassy carbon/Pt and glassy carbon/Ni electrodes, Chem. Eng. J. 188(0), 173–180 (2012)CrossRef
Metadaten
Titel
Energy Conversion Based on Bio(electro)catalysts
verfasst von
Tanja Vidaković-Koch
Copyright-Jahr
2017
Verlag
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-662-46657-5_23