Skip to main content

2017 | OriginalPaper | Buchkapitel

25. Advanced Extractive Electrometallurgy

verfasst von : Di Hu, George Z. Chen

Erschienen in: Springer Handbook of Electrochemical Energy

Verlag: Springer Berlin Heidelberg

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This chapter starts with a brief introduction of current technologies for metal extraction via chemical and electrochemical means. A focus is given to recent research and development of new methods for titanium extraction. The chapter is then devoted to describing the principle and methodology of the more recently proposed Fray–Farthing–Chen (FFC) Cambridge process, which is a molten salt-assisted solid-state electrochemical reduction process. Typical examples are highlighted for application of the FFC Cambridge process for extraction of titanium, silicon and other metals, and also the production of various metal alloys, and the related development of fundamental understanding of the proposed in situ reduction routes from physical, chemical, and electrochemical points of view. The unique ability of the FFC Cambridge process for near-net-shape production of metallic components directly from their metal oxide precursors is also discussed.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
[1]
Zurück zum Zitat F. Habashi: Handbook of Extractive Metallurgy (Wiley-VCH, Weinheism 1997) F. Habashi: Handbook of Extractive Metallurgy (Wiley-VCH, Weinheism 1997)
[2]
Zurück zum Zitat G.Z. Chen, D.J. Fray: Electro-deoxidation of metal oxides, Proc. 130th TMS Annu. Meet. New Orleans (2000) pp. 1147–1151 G.Z. Chen, D.J. Fray: Electro-deoxidation of metal oxides, Proc. 130th TMS Annu. Meet. New Orleans (2000) pp. 1147–1151
[3]
Zurück zum Zitat A. Maitre, P. Lefort: Carbon oxidation at high temperature during carbothermal reduction of titanium dioxide, Phys. Chem. Chem. Phys. 1, 2311–2318 (1999)CrossRef A. Maitre, P. Lefort: Carbon oxidation at high temperature during carbothermal reduction of titanium dioxide, Phys. Chem. Chem. Phys. 1, 2311–2318 (1999)CrossRef
[4]
Zurück zum Zitat O. Kubaschewski, C.B. Alcock: Metallurgical Thermo-Chemistry, 5th edn. (Pergamon, New York 1979) O. Kubaschewski, C.B. Alcock: Metallurgical Thermo-Chemistry, 5th edn. (Pergamon, New York 1979)
[5]
Zurück zum Zitat J.L. Murray (Ed.): Phase Diagrams of Binary Titanium Alloys (ASM, Materials Park 1987) p. 345 J.L. Murray (Ed.): Phase Diagrams of Binary Titanium Alloys (ASM, Materials Park 1987) p. 345
[6]
Zurück zum Zitat V. Dosaj, M. Kroupa, R. Bittar: Silicon and silicon alloys, chemical and metallurgical. In: Kirk-Othmer Encyclopedia of Chemical Technology, ed. by K. Othmer (Wiley, New York 2000) V. Dosaj, M. Kroupa, R. Bittar: Silicon and silicon alloys, chemical and metallurgical. In: Kirk-Othmer Encyclopedia of Chemical Technology, ed. by K. Othmer (Wiley, New York 2000)
[7]
Zurück zum Zitat D. Elwell, G.M. Rao: Electrolytic production of silicon, J. App. Electrochem. 18, 15–22 (1988)CrossRef D. Elwell, G.M. Rao: Electrolytic production of silicon, J. App. Electrochem. 18, 15–22 (1988)CrossRef
[8]
Zurück zum Zitat B.G. Gribov, K.V. Zinov’ev: Preparation of high-purity silicon for solar cells, Inorg. Mater. 39, 653–662 (2003)CrossRef B.G. Gribov, K.V. Zinov’ev: Preparation of high-purity silicon for solar cells, Inorg. Mater. 39, 653–662 (2003)CrossRef
[9]
Zurück zum Zitat A. Schei, J.K. Tuset, H. Tveit: Production of High Silicon Alloys (Tapir, Trondheim 1998) A. Schei, J.K. Tuset, H. Tveit: Production of High Silicon Alloys (Tapir, Trondheim 1998)
[10]
Zurück zum Zitat L.A. Corathers: Silicon. In: Mineral Commodity Summaries, ed. by E.K. Schnebele (US Geological Survey, Washington 2010) pp. 144–145 L.A. Corathers: Silicon. In: Mineral Commodity Summaries, ed. by E.K. Schnebele (US Geological Survey, Washington 2010) pp. 144–145
[11]
Zurück zum Zitat B. Ceccaroli, O. Lohne: Solar grade silicon feedstock. In: Handbook of Photovoltaic Science and Engineering, ed. by A. Luque, S. Hegedus (Wiley, New York 2011) pp. 169–217CrossRef B. Ceccaroli, O. Lohne: Solar grade silicon feedstock. In: Handbook of Photovoltaic Science and Engineering, ed. by A. Luque, S. Hegedus (Wiley, New York 2011) pp. 169–217CrossRef
[12]
Zurück zum Zitat C. Leyens, M. Peters: Titanium and Titanium Alloys: Fundamentals and Applications (Wiley-VCH, Weinheim 2003)CrossRef C. Leyens, M. Peters: Titanium and Titanium Alloys: Fundamentals and Applications (Wiley-VCH, Weinheim 2003)CrossRef
[13]
Zurück zum Zitat G. Lütjering, J.C. Williams: Titanium, 2nd edn. (Springer, Berlin, Heidelberg 2007) G. Lütjering, J.C. Williams: Titanium, 2nd edn. (Springer, Berlin, Heidelberg 2007)
[14]
Zurück zum Zitat M.J. Donachie: Titanium: A Technical Guide (ASM International, Materials Park 2000) M.J. Donachie: Titanium: A Technical Guide (ASM International, Materials Park 2000)
[15]
Zurück zum Zitat M.A. Hunter: Metallic titanium, J. Am. Chem. Soc. 32, 330–336 (1910)CrossRef M.A. Hunter: Metallic titanium, J. Am. Chem. Soc. 32, 330–336 (1910)CrossRef
[18]
Zurück zum Zitat W. Kroll: Einige Eigenschaften des reinen Titans, Metallwirtschaft 18, 77–80 (1938) W. Kroll: Einige Eigenschaften des reinen Titans, Metallwirtschaft 18, 77–80 (1938)
[19]
Zurück zum Zitat W. Kroll: The production of ductile titanium, J. Electrochem. Soc. 78(1), 35–47 (1940)CrossRef W. Kroll: The production of ductile titanium, J. Electrochem. Soc. 78(1), 35–47 (1940)CrossRef
[20]
Zurück zum Zitat A.D. Hartman, S.J. Gerdemann, J.S. Hansen: Producing lower-cost titanium for automotive applications, J. Min. Met. Min. Soc. 50, 16–19 (1998)CrossRef A.D. Hartman, S.J. Gerdemann, J.S. Hansen: Producing lower-cost titanium for automotive applications, J. Min. Met. Min. Soc. 50, 16–19 (1998)CrossRef
[21]
Zurück zum Zitat A.D. Mcquillan, M.K. Mcquillan: Titanium (Butterworths, London 1956) A.D. Mcquillan, M.K. Mcquillan: Titanium (Butterworths, London 1956)
[22]
Zurück zum Zitat M.E. Sibert, Q.H. Mckenna, M. Steinberg, E. Wainer: Electrolytic reduction of titanium monoxide, J. Electrochem. Soc. 102, 252–262 (1955)CrossRef M.E. Sibert, Q.H. Mckenna, M. Steinberg, E. Wainer: Electrolytic reduction of titanium monoxide, J. Electrochem. Soc. 102, 252–262 (1955)CrossRef
[23]
Zurück zum Zitat M. Steinberg, S.S. Carlton, M.E. Sibert, E. Wainer: Preparation of titanium by fluoride electrolysis, J. Electrochem. Soc. 102, 332–340 (1955)CrossRef M. Steinberg, S.S. Carlton, M.E. Sibert, E. Wainer: Preparation of titanium by fluoride electrolysis, J. Electrochem. Soc. 102, 332–340 (1955)CrossRef
[25]
Zurück zum Zitat J. Thonstad: Some recent trends in molten salt electrolysis of titanium, magnesium, and aluminum, High Temp. Mater. Process. 9, 135–146 (1990)CrossRef J. Thonstad: Some recent trends in molten salt electrolysis of titanium, magnesium, and aluminum, High Temp. Mater. Process. 9, 135–146 (1990)CrossRef
[26]
Zurück zum Zitat K. Grjotheim, M. Krohn: Aluminum Electrolysis: Fundamentals of the Hall–Heroult Process, 3rd edn. (Aluminum, Düsseldorf 2002) K. Grjotheim, M. Krohn: Aluminum Electrolysis: Fundamentals of the Hall–Heroult Process, 3rd edn. (Aluminum, Düsseldorf 2002)
[27]
Zurück zum Zitat J.M. Allwood, J.M. Cullen, R.L. Milford: Options for achieving a 50% cut in industrial carbon emissions by 2050, Environ. Sci. Technol. 44, 1888–1894 (2010)CrossRef J.M. Allwood, J.M. Cullen, R.L. Milford: Options for achieving a 50% cut in industrial carbon emissions by 2050, Environ. Sci. Technol. 44, 1888–1894 (2010)CrossRef
[28]
Zurück zum Zitat E.H.K. Technologies: Summary of Emerging Titanium Cost Reduction Technologies (EHK Technologies, Vancouver 2004) p. 59 E.H.K. Technologies: Summary of Emerging Titanium Cost Reduction Technologies (EHK Technologies, Vancouver 2004) p. 59
[29]
Zurück zum Zitat M.V. Ginatt: Process for the electrolytic production of metals, U.S. Patent 6074543 (2000) M.V. Ginatt: Process for the electrolytic production of metals, U.S. Patent 6074543 (2000)
[30]
Zurück zum Zitat M.V. Ginatta: Why produce titanium by EW?, J. Min. Met. Miner. Soc. 52, 18–20 (2000)CrossRef M.V. Ginatta: Why produce titanium by EW?, J. Min. Met. Miner. Soc. 52, 18–20 (2000)CrossRef
[31]
Zurück zum Zitat M.V. Ginatta: Economics and Production of Primary Titanium by Electrolytic Winning (EPD Congr., New Orleans 2001) pp. 1–17 M.V. Ginatta: Economics and Production of Primary Titanium by Electrolytic Winning (EPD Congr., New Orleans 2001) pp. 1–17
[32]
Zurück zum Zitat J.C. Withers, J. Laughlin, R.O. Loufty: The production of titanium from a composite anode, Proc. Light Met. ‘07, Orlando (2007) pp. 117–125 J.C. Withers, J. Laughlin, R.O. Loufty: The production of titanium from a composite anode, Proc. Light Met. ‘07, Orlando (2007) pp. 117–125
[33]
Zurück zum Zitat J.C. Withers, J. Laughlin, R.O. Loufty: Processing routes to produce titanium from TiO2, Proc. Light Met. ‘07, Orlando (2007) pp. 109–115 J.C. Withers, J. Laughlin, R.O. Loufty: Processing routes to produce titanium from TiO2, Proc. Light Met. ‘07, Orlando (2007) pp. 109–115
[34]
Zurück zum Zitat J.C. Withers, F. Cardarelli, J. Laughlin, R.O. Loufty: Recent Improvements for Electrowinning Titanium Metal from Composite Anodes, Int. Round Table Titanium Prod. Molten Salts (DLR German Aerospace Center, Cologne 2008) J.C. Withers, F. Cardarelli, J. Laughlin, R.O. Loufty: Recent Improvements for Electrowinning Titanium Metal from Composite Anodes, Int. Round Table Titanium Prod. Molten Salts (DLR German Aerospace Center, Cologne 2008)
[35]
Zurück zum Zitat I. Park, T. Abiko, T.H. Okabe: Production of titanium powder directly from TiO2 in CaCl2 through an electronically mediated reaction (EMR), J. Phys. Chem. Solids 66, 410–413 (2005)CrossRef I. Park, T. Abiko, T.H. Okabe: Production of titanium powder directly from TiO2 in CaCl2 through an electronically mediated reaction (EMR), J. Phys. Chem. Solids 66, 410–413 (2005)CrossRef
[36]
Zurück zum Zitat T. Okabe, Y. Waseda: Producing titanium through an electronically mediated reaction, J. Min. Met. Miner. Soc. 49, 28–32 (1997)CrossRef T. Okabe, Y. Waseda: Producing titanium through an electronically mediated reaction, J. Min. Met. Miner. Soc. 49, 28–32 (1997)CrossRef
[37]
Zurück zum Zitat T. Abiko, I. Park, T.H. Okabe: Reduction of titanium oxide in molten salt medium, Proc. 10th World Conf. Titanium, Hamburg (2003) T. Abiko, I. Park, T.H. Okabe: Reduction of titanium oxide in molten salt medium, Proc. 10th World Conf. Titanium, Hamburg (2003)
[38]
Zurück zum Zitat D.J. Fray: Novel methods for the production of titanium, Int. Mater. Rev. 53, 317–325 (2008)CrossRef D.J. Fray: Novel methods for the production of titanium, Int. Mater. Rev. 53, 317–325 (2008)CrossRef
[41]
Zurück zum Zitat R. Suzuki, K. Ono, K. Teranuma: Calciothermic reduction of titanium oxide and in-situ electrolysis in molten CaCl2, Met. Mater. Trans. B 34, 287–295 (2003)CrossRef R. Suzuki, K. Ono, K. Teranuma: Calciothermic reduction of titanium oxide and in-situ electrolysis in molten CaCl2, Met. Mater. Trans. B 34, 287–295 (2003)CrossRef
[42]
Zurück zum Zitat R.O. Suzuki: Calciothermic reduction of TiO2 and in situ electrolysis of CaO in the molten CaCl2, J. Phys. Chem. Solids 66, 461–465 (2005)CrossRef R.O. Suzuki: Calciothermic reduction of TiO2 and in situ electrolysis of CaO in the molten CaCl2, J. Phys. Chem. Solids 66, 461–465 (2005)CrossRef
[43]
Zurück zum Zitat K. Ono, R.O. Suzuki: A new concept for producing Ti sponge: Calciothermic reduction, J. Min. Met. Miner. Soc. 54, 59–61 (2002)CrossRef K. Ono, R.O. Suzuki: A new concept for producing Ti sponge: Calciothermic reduction, J. Min. Met. Miner. Soc. 54, 59–61 (2002)CrossRef
[44]
Zurück zum Zitat R.O. Suzuki, Y. Matsuoka: Preparation of Ti-V-Cr hydrogen absorption alloy powder, Jt. Int. Conf. Sustain. Enegry Environ. (SEE), Hua Hin (2004) pp. 167–170 R.O. Suzuki, Y. Matsuoka: Preparation of Ti-V-Cr hydrogen absorption alloy powder, Jt. Int. Conf. Sustain. Enegry Environ. (SEE), Hua Hin (2004) pp. 167–170
[45]
Zurück zum Zitat R.O. Suzuki, K. Tatemoto, H. Kitagawa: Direct synthesis of the hydrogen storage V-Ti alloy powder from the oxides by calcium co-reduction, J. Alloy. Compd. 385, 173–180 (2004)CrossRef R.O. Suzuki, K. Tatemoto, H. Kitagawa: Direct synthesis of the hydrogen storage V-Ti alloy powder from the oxides by calcium co-reduction, J. Alloy. Compd. 385, 173–180 (2004)CrossRef
[46]
Zurück zum Zitat R. Suzuki, S. Inoue: Calciothermic reduction of titanium oxide in molten CaCl2, Met. Mater. Trans. B 34, 277–285 (2003)CrossRef R. Suzuki, S. Inoue: Calciothermic reduction of titanium oxide in molten CaCl2, Met. Mater. Trans. B 34, 277–285 (2003)CrossRef
[47]
Zurück zum Zitat G.D. Rigby, I.P. Ratchev, R.I. Olivares, K. Mukunthan, S.A. Bliznyukov, A.A. Shook: Polar titanium – Development of the BHP billiton titanium metal production process, Proc. 21st Annu. ITA Conf. Titanium, Scottsdale (2005) G.D. Rigby, I.P. Ratchev, R.I. Olivares, K. Mukunthan, S.A. Bliznyukov, A.A. Shook: Polar titanium – Development of the BHP billiton titanium metal production process, Proc. 21st Annu. ITA Conf. Titanium, Scottsdale (2005)
[48]
Zurück zum Zitat G.Z. Chen, D.J. Fray, T.W. Farthing: Direct electrochemical reduction of titanium dioxide to titanium in molten calcium chloride, Nature 407, 361–364 (2000)CrossRef G.Z. Chen, D.J. Fray, T.W. Farthing: Direct electrochemical reduction of titanium dioxide to titanium in molten calcium chloride, Nature 407, 361–364 (2000)CrossRef
[49]
Zurück zum Zitat D.R. Sadoway: New opportunities for metals extraction and waste treatment by electrochemical processing in molten salts, J. Mater. Res. 10, 487–492 (1995)CrossRef D.R. Sadoway: New opportunities for metals extraction and waste treatment by electrochemical processing in molten salts, J. Mater. Res. 10, 487–492 (1995)CrossRef
[50]
Zurück zum Zitat T.H. Okabe, M. Nakamura, T. Oishi, K. Ono: Electrochemical deoxidation of titanium, Met. Mater. Trans. B 24B, 449–455 (1993)CrossRef T.H. Okabe, M. Nakamura, T. Oishi, K. Ono: Electrochemical deoxidation of titanium, Met. Mater. Trans. B 24B, 449–455 (1993)CrossRef
[51]
Zurück zum Zitat F. Cardarelli: Method for electrowinning of titanium metal or alloy from titanium oxide containing compound in the liquid state, Canadia Patent 02363647 (2004), pp. 18 F. Cardarelli: Method for electrowinning of titanium metal or alloy from titanium oxide containing compound in the liquid state, Canadia Patent 02363647 (2004), pp. 18
[52]
Zurück zum Zitat F. Cardarelli: A method for the continuous electrowinning of pure titanium metal from molten titanium slag, ilmenite and other semiconductive titanium oxide compounds, Canadia Patent 2363648 (2001), pp. 27 F. Cardarelli: A method for the continuous electrowinning of pure titanium metal from molten titanium slag, ilmenite and other semiconductive titanium oxide compounds, Canadia Patent 2363648 (2001), pp. 27
[53]
Zurück zum Zitat J. Peng, H. Chen, X. Jin, T. Wang, D. Wang, G.Z. Chen: Phase-tunable fabrication of consolidated (α + β)-TiZr alloys for biomedical applications through molten salt electrolysis of solid oxides, Chem. Mater. 21, 5187–5195 (2009)CrossRef J. Peng, H. Chen, X. Jin, T. Wang, D. Wang, G.Z. Chen: Phase-tunable fabrication of consolidated (α + β)-TiZr alloys for biomedical applications through molten salt electrolysis of solid oxides, Chem. Mater. 21, 5187–5195 (2009)CrossRef
[54]
Zurück zum Zitat D.J. Fray, G.Z. Chen: Reduction of titanium and other metal oxides using electrodeoxidation, Mater. Sci. Technol. 20, 295–300 (2004)CrossRef D.J. Fray, G.Z. Chen: Reduction of titanium and other metal oxides using electrodeoxidation, Mater. Sci. Technol. 20, 295–300 (2004)CrossRef
[55]
Zurück zum Zitat K. Dring, C. Rosenkilde: Production of titanium and titanium alloys by electrochemical reduction of oxide precursors, Mater. Technol. 22, 4 (2007) K. Dring, C. Rosenkilde: Production of titanium and titanium alloys by electrochemical reduction of oxide precursors, Mater. Technol. 22, 4 (2007)
[56]
Zurück zum Zitat K. Dring, R. Bhagat, M. Jackson, R. Dashwood, D. Inman: Direct electrochemical production of Ti-10W alloys from mixed oxide preform precursors, J. Alloy. Compd. 419, 103–109 (2006)CrossRef K. Dring, R. Bhagat, M. Jackson, R. Dashwood, D. Inman: Direct electrochemical production of Ti-10W alloys from mixed oxide preform precursors, J. Alloy. Compd. 419, 103–109 (2006)CrossRef
[57]
Zurück zum Zitat R. Bhagat, M. Jackson, D. Inman, R. Dashwood: The production of Ti–Mo alloys from mixed oxide precursors via the FFC Cambridge process, J. Electrochem. Soc. 155, E63–E69 (2008)CrossRef R. Bhagat, M. Jackson, D. Inman, R. Dashwood: The production of Ti–Mo alloys from mixed oxide precursors via the FFC Cambridge process, J. Electrochem. Soc. 155, E63–E69 (2008)CrossRef
[58]
Zurück zum Zitat J. Ben, J. Martin, D. David, I. Douglas, D. Richard: Production of NiTi via the FFC Cambridge Process, J. Electrochem. Soc. 155, E171–E177 (2008)CrossRef J. Ben, J. Martin, D. David, I. Douglas, D. Richard: Production of NiTi via the FFC Cambridge Process, J. Electrochem. Soc. 155, E171–E177 (2008)CrossRef
[59]
Zurück zum Zitat M. Ma, D. Wang, W. Wang, X. Hu, X. Jin, G.Z. Chen: Extraction of titanium from different titania precursors by the FFC Cambridge process, J. Alloy. Compd. 420, 37–45 (2006)CrossRef M. Ma, D. Wang, W. Wang, X. Hu, X. Jin, G.Z. Chen: Extraction of titanium from different titania precursors by the FFC Cambridge process, J. Alloy. Compd. 420, 37–45 (2006)CrossRef
[60]
Zurück zum Zitat A.M. Abdelkader, D.J. Fray: Direct electrochemical preparation of Nb-10Hf-1Ti alloy, Electrochim. Acta 55, 2924–2931 (2010)CrossRef A.M. Abdelkader, D.J. Fray: Direct electrochemical preparation of Nb-10Hf-1Ti alloy, Electrochim. Acta 55, 2924–2931 (2010)CrossRef
[61]
Zurück zum Zitat M. Ma, D. Wang, X. Hu, X. Jin, G.Z. Chen: A direct electrochemical route from ilmenite to hydrogen-storage ferrotitanium alloys, Chemistry 12, 5075–5081 (2006)CrossRef M. Ma, D. Wang, X. Hu, X. Jin, G.Z. Chen: A direct electrochemical route from ilmenite to hydrogen-storage ferrotitanium alloys, Chemistry 12, 5075–5081 (2006)CrossRef
[62]
Zurück zum Zitat D.J. Fray: Electrochemical method and apparatus, US Patent WO 2004/018735 A1 (2004), pp. 15 D.J. Fray: Electrochemical method and apparatus, US Patent WO 2004/018735 A1 (2004), pp. 15
[63]
Zurück zum Zitat D.J. Fray, G.Z. Chen: Metal and alloy powders and powder fabrication, US Patent WO 02/40725 A2 (2002) D.J. Fray, G.Z. Chen: Metal and alloy powders and powder fabrication, US Patent WO 02/40725 A2 (2002)
[64]
Zurück zum Zitat D.J. Fray, G.Z. Chen: Metal and alloy powders and powder fabrication, US Patent US 2004/0052672 A1 (2004) D.J. Fray, G.Z. Chen: Metal and alloy powders and powder fabrication, US Patent US 2004/0052672 A1 (2004)
[65]
Zurück zum Zitat D.J. Fray, R.C. Copcutt, G.Z. Chen: Intermetallic compounds, US Patent US 2004/0104125 A1 (2004) D.J. Fray, R.C. Copcutt, G.Z. Chen: Intermetallic compounds, US Patent US 2004/0104125 A1 (2004)
[66]
Zurück zum Zitat D.J. Fray, T.W. Farthing, G.Z. Chen: Removal of oxygen from metal oxides and solid solutions by electrolysis in a fused salt, US Patent WO 99/64638 (1999) D.J. Fray, T.W. Farthing, G.Z. Chen: Removal of oxygen from metal oxides and solid solutions by electrolysis in a fused salt, US Patent WO 99/64638 (1999)
[67]
Zurück zum Zitat D.J. Fray, T.W. Farthing, G.Z. Chen: Removal of substances from metal and semi-metal compounds, US Patent US 6,712,952 (2004) D.J. Fray, T.W. Farthing, G.Z. Chen: Removal of substances from metal and semi-metal compounds, US Patent US 6,712,952 (2004)
[68]
Zurück zum Zitat G. Chen, E. Gordo, D. Fray: Direct electrolytic preparation of chromium powder, Met. Mater. Trans. B 35, 223–233 (2004)CrossRef G. Chen, E. Gordo, D. Fray: Direct electrolytic preparation of chromium powder, Met. Mater. Trans. B 35, 223–233 (2004)CrossRef
[69]
Zurück zum Zitat G. Qiu, K. Jiang, M. Ma, D. Wang, X. Jin, G.Z. Chen: Roles of cationic and elemental calcium in electro-reduction of solid metal oxides in molten calcium chloride, Z. Naturforsch. A 62a, 292–302 (2007) G. Qiu, K. Jiang, M. Ma, D. Wang, X. Jin, G.Z. Chen: Roles of cationic and elemental calcium in electro-reduction of solid metal oxides in molten calcium chloride, Z. Naturforsch. A 62a, 292–302 (2007)
[70]
Zurück zum Zitat D. Wang, G. Qiu, X. Jin, X. Hu, G.Z. Chen: Electrochemical metallization of solid terbium oxide, Angew. Chem. Int. Ed. 45, 2384–2388 (2006)CrossRef D. Wang, G. Qiu, X. Jin, X. Hu, G.Z. Chen: Electrochemical metallization of solid terbium oxide, Angew. Chem. Int. Ed. 45, 2384–2388 (2006)CrossRef
[71]
Zurück zum Zitat C. Schwandt, D.J. Fray: The electrochemical reduction of chromium sesquioxide in molten calcium chloride under cathodic potential control, Z. Naturforsch. A 62, 655–670 (2007)CrossRef C. Schwandt, D.J. Fray: The electrochemical reduction of chromium sesquioxide in molten calcium chloride under cathodic potential control, Z. Naturforsch. A 62, 655–670 (2007)CrossRef
[72]
Zurück zum Zitat K.C.T. Kilby, L. Centeno, G. Doughty, S. Mucklejohn, D.J. Fray: The Electrochemical Production of Oxygen and Metal via the FFC-Cambridge Process (Space Resources Roundtable, Colorado School of Mines, Golden, 2006) K.C.T. Kilby, L. Centeno, G. Doughty, S. Mucklejohn, D.J. Fray: The Electrochemical Production of Oxygen and Metal via the FFC-Cambridge Process (Space Resources Roundtable, Colorado School of Mines, Golden, 2006)
[73]
Zurück zum Zitat R. Barnett, K. Kilby, D. Fray: Reduction of tantalum pentoxide using graphite and tin-oxide-based anodes via the FFC-cambridge process, Met. Mater. Trans. B 40, 150–157 (2009)CrossRef R. Barnett, K. Kilby, D. Fray: Reduction of tantalum pentoxide using graphite and tin-oxide-based anodes via the FFC-cambridge process, Met. Mater. Trans. B 40, 150–157 (2009)CrossRef
[74]
Zurück zum Zitat W. Xiao, X. Jin, Y. Deng, D. Wang, X. Hu, G.Z. Chen: Electrochemically driven three-phase interlines into insulator compounds: Electroreduction of solid SiO2 in molten CaCl2, Chem. Phys. Chem. 7, 1750–1758 (2006) W. Xiao, X. Jin, Y. Deng, D. Wang, X. Hu, G.Z. Chen: Electrochemically driven three-phase interlines into insulator compounds: Electroreduction of solid SiO2 in molten CaCl2, Chem. Phys. Chem. 7, 1750–1758 (2006)
[75]
Zurück zum Zitat K. Dring, R. Dashwood, D. Inman: Voltammetry of titanium dioxide in molten calcium chloride at 900 °C, J. Electrochem. Soc. 152, E104–E113 (2005)CrossRef K. Dring, R. Dashwood, D. Inman: Voltammetry of titanium dioxide in molten calcium chloride at 900 °C, J. Electrochem. Soc. 152, E104–E113 (2005)CrossRef
[76]
Zurück zum Zitat C. Schwandt, G.R. Doughty, D.J. Fray: The FFC-cambridge process for titanium metal winning, Key Eng. Mater. 436, 13–25 (2010)CrossRef C. Schwandt, G.R. Doughty, D.J. Fray: The FFC-cambridge process for titanium metal winning, Key Eng. Mater. 436, 13–25 (2010)CrossRef
[77]
Zurück zum Zitat J.O.M. Bockris, G.J. Hills, D. Inman, L. Young: An all-glass reference electrode for molten salt systems, J. Sci. Instrum. 33, 438 (1956)CrossRef J.O.M. Bockris, G.J. Hills, D. Inman, L. Young: An all-glass reference electrode for molten salt systems, J. Sci. Instrum. 33, 438 (1956)CrossRef
[78]
Zurück zum Zitat K. Yasuda, T. Nohira, Y.H. Ogata, Y. Ito: Electrochemical window of molten LiCl-KCl-CaCl2 and the Ag+/Ag reference electrode, Electrochim. Acta 51, 561–565 (2005)CrossRef K. Yasuda, T. Nohira, Y.H. Ogata, Y. Ito: Electrochemical window of molten LiCl-KCl-CaCl2 and the Ag+/Ag reference electrode, Electrochim. Acta 51, 561–565 (2005)CrossRef
[79]
Zurück zum Zitat P. Gao, X. Jin, D. Wang, X. Hu, G.Z. Chen: A quartz sealed Ag/AgCl reference electrode for CaCl2 based molten salts, J. Electroanal. Chem. 579, 321–328 (2005)CrossRef P. Gao, X. Jin, D. Wang, X. Hu, G.Z. Chen: A quartz sealed Ag/AgCl reference electrode for CaCl2 based molten salts, J. Electroanal. Chem. 579, 321–328 (2005)CrossRef
[80]
Zurück zum Zitat H. Wang, N.J. Siambun, L. Yu, G.Z. Chen: A Robust alumina membrane reference electrode for high temperature molten salts, J. Electrochem. Soc. 159, H740–H746 (2012)CrossRef H. Wang, N.J. Siambun, L. Yu, G.Z. Chen: A Robust alumina membrane reference electrode for high temperature molten salts, J. Electrochem. Soc. 159, H740–H746 (2012)CrossRef
[81]
Zurück zum Zitat G. Qiu, M. Ma, D. Wang, X. Jin, X. Hu, G.Z. Chen: Metallic cavity electrodes for investigation of powders, J. Electrochem. Soc. 152, E328–E336 (2005)CrossRef G. Qiu, M. Ma, D. Wang, X. Jin, X. Hu, G.Z. Chen: Metallic cavity electrodes for investigation of powders, J. Electrochem. Soc. 152, E328–E336 (2005)CrossRef
[82]
Zurück zum Zitat J. Peng, G. Li, H. Chen, D. Wang, X. Jin, G.Z. Chen: Cyclic voltammetry of ZrO2 powder in the metallic cavity electrode in molten CaCl2, J. Electrochem. Soc. 157, F1–F9 (2010)CrossRef J. Peng, G. Li, H. Chen, D. Wang, X. Jin, G.Z. Chen: Cyclic voltammetry of ZrO2 powder in the metallic cavity electrode in molten CaCl2, J. Electrochem. Soc. 157, F1–F9 (2010)CrossRef
[83]
Zurück zum Zitat K. Jiang, X.H. Hu, H.J. Sun, D.H. Wang, X.B. Jin, Y.Y. Ren, G.Z. Chen: Electrochemical synthesis of LiTiO2 and LiTi2O4 in molten LiCl, Chem. Mater. 16, 4324–4329 (2004)CrossRef K. Jiang, X.H. Hu, H.J. Sun, D.H. Wang, X.B. Jin, Y.Y. Ren, G.Z. Chen: Electrochemical synthesis of LiTiO2 and LiTi2O4 in molten LiCl, Chem. Mater. 16, 4324–4329 (2004)CrossRef
[84]
Zurück zum Zitat X. Jin, P. Gao, D. Wang, X. Hu, G.Z. Chen: Electrochemical preparation of silicon and its alloys from solid oxides in molten calcium chloride, Angew. Chem. Int. Ed. 43, 733–736 (2004)CrossRef X. Jin, P. Gao, D. Wang, X. Hu, G.Z. Chen: Electrochemical preparation of silicon and its alloys from solid oxides in molten calcium chloride, Angew. Chem. Int. Ed. 43, 733–736 (2004)CrossRef
[85]
Zurück zum Zitat T. Nohira, K. Yasuda, Y. Ito: Pinpoint and bulk electrochemical reduction of insulating silicon dioxide to silicon, Nat. Mater. 2, 397–401 (2003)CrossRef T. Nohira, K. Yasuda, Y. Ito: Pinpoint and bulk electrochemical reduction of insulating silicon dioxide to silicon, Nat. Mater. 2, 397–401 (2003)CrossRef
[86]
Zurück zum Zitat K. Yasuda, T. Nohira, R. Hagiwara, Y.H. Ogata: Direct electrolytic reduction of solid SiO2 in Molten CaCl2 for the production of solar grade silicon, Electrochim. Acta 53, 106–110 (2007)CrossRef K. Yasuda, T. Nohira, R. Hagiwara, Y.H. Ogata: Direct electrolytic reduction of solid SiO2 in Molten CaCl2 for the production of solar grade silicon, Electrochim. Acta 53, 106–110 (2007)CrossRef
[87]
Zurück zum Zitat K. Yasuda, T. Nohira, Y.H. Ogata, Y. Ito: Direct electrolytic reduction of solid silicon dioxide in molten LiCl-KCl-CaCl2 at 773K, J. Electrochem. Soc. 152, D208–D212 (2005)CrossRef K. Yasuda, T. Nohira, Y.H. Ogata, Y. Ito: Direct electrolytic reduction of solid silicon dioxide in molten LiCl-KCl-CaCl2 at 773K, J. Electrochem. Soc. 152, D208–D212 (2005)CrossRef
[88]
Zurück zum Zitat K. Yasuda, T. Nohira, R. Hagiwara, Y.H. Ogata: Diagrammatic representation of direct electrolytic reduction of SiO2 in molten CaCl2, J. Electrochem. Soc. 154, E95–E101 (2007)CrossRef K. Yasuda, T. Nohira, R. Hagiwara, Y.H. Ogata: Diagrammatic representation of direct electrolytic reduction of SiO2 in molten CaCl2, J. Electrochem. Soc. 154, E95–E101 (2007)CrossRef
[89]
Zurück zum Zitat W. Xiao, X. Jin, Y. Deng, D. Wang, G.Z. Chen: Rationalisation and optimisation of solid state electro-reduction of SiO2 to Si in molten CaCl2 in accordance with dynamic three-phase interlines based voltammetry, J. Electroanal. Chem. 639, 130–140 (2010)CrossRef W. Xiao, X. Jin, Y. Deng, D. Wang, G.Z. Chen: Rationalisation and optimisation of solid state electro-reduction of SiO2 to Si in molten CaCl2 in accordance with dynamic three-phase interlines based voltammetry, J. Electroanal. Chem. 639, 130–140 (2010)CrossRef
[90]
Zurück zum Zitat K. Yasuda, T. Nohira, R. Hagiwara, Y.H. Ogata: Direct electrolytic reduction of solid SiO2 in molten CaCl2, Proc. Light Met. ‘07, Orlando (2007) pp. 5–11 K. Yasuda, T. Nohira, R. Hagiwara, Y.H. Ogata: Direct electrolytic reduction of solid SiO2 in molten CaCl2, Proc. Light Met. ‘07, Orlando (2007) pp. 5–11
[91]
Zurück zum Zitat K. Yasuda, T. Nohira, K. Amezawa, Y.H. Ogata, Y. Ito: Mechanism of direct electrolytic reduction of solid SiO2 to Si in molten CaCl2, J. Electrochem. Soc. 152, D69–D74 (2005)CrossRef K. Yasuda, T. Nohira, K. Amezawa, Y.H. Ogata, Y. Ito: Mechanism of direct electrolytic reduction of solid SiO2 to Si in molten CaCl2, J. Electrochem. Soc. 152, D69–D74 (2005)CrossRef
[92]
Zurück zum Zitat K. Dring: Direct electrochemical reduction of titanium dioxide in molten salts, Key Eng. Mater. 436, 27–34 (2010)CrossRef K. Dring: Direct electrochemical reduction of titanium dioxide in molten salts, Key Eng. Mater. 436, 27–34 (2010)CrossRef
[93]
Zurück zum Zitat K. Jiang, X. Hu, M. Ma, D. Wang, G. Qiu, X. Jin, G.Z. Chen: ‘‘Perovskitization’’ – Assisted electrochemical reduction of solid TiO2 in molten CaCl2, Angew. Chem. Int. Ed. 45, 428–432 (2006)CrossRef K. Jiang, X. Hu, M. Ma, D. Wang, G. Qiu, X. Jin, G.Z. Chen: ‘‘Perovskitization’’ – Assisted electrochemical reduction of solid TiO2 in molten CaCl2, Angew. Chem. Int. Ed. 45, 428–432 (2006)CrossRef
[94]
Zurück zum Zitat C. Schwandt, D.T.L. Alexander, D.J. Fray: The electro-deoxidation of porous titanium dioxide precursors in molten calcium chloride under cathodic potential control, Electrochim. Acta 54, 3819–3829 (2009)CrossRef C. Schwandt, D.T.L. Alexander, D.J. Fray: The electro-deoxidation of porous titanium dioxide precursors in molten calcium chloride under cathodic potential control, Electrochim. Acta 54, 3819–3829 (2009)CrossRef
[95]
Zurück zum Zitat C. Schwandt, D.J. Fray: Determination of the kinetic pathway in the electrochemical reduction of titanium dioxide in molten calcium chloride, Electrochim. Acta 51, 66–76 (2005)CrossRef C. Schwandt, D.J. Fray: Determination of the kinetic pathway in the electrochemical reduction of titanium dioxide in molten calcium chloride, Electrochim. Acta 51, 66–76 (2005)CrossRef
[96]
Zurück zum Zitat R. Centeno-Sánchez, D. Fray, G. Chen: Study on the reduction of highly porous TiO2 precursors and thin TiO2 layers by the FFC-Cambridge process, J. Mater. Sci. 42, 7494–7501 (2007)CrossRef R. Centeno-Sánchez, D. Fray, G. Chen: Study on the reduction of highly porous TiO2 precursors and thin TiO2 layers by the FFC-Cambridge process, J. Mater. Sci. 42, 7494–7501 (2007)CrossRef
[97]
Zurück zum Zitat G.Z. Chen, D.J. Fray: Voltammetric studies of the oxygen-titanium binary system in molten calcium chloride, J. Electrochem. Soc. 149, E455–E467 (2002)CrossRef G.Z. Chen, D.J. Fray: Voltammetric studies of the oxygen-titanium binary system in molten calcium chloride, J. Electrochem. Soc. 149, E455–E467 (2002)CrossRef
[98]
Zurück zum Zitat D.T.L. Alexander, C. Schwandt, D.J. Fray: The electro-deoxidation of dense titanium dioxide precursors in molten calcium chloride giving a new reaction pathway, Electrochim. Acta 56, 3286–3295 (2011)CrossRef D.T.L. Alexander, C. Schwandt, D.J. Fray: The electro-deoxidation of dense titanium dioxide precursors in molten calcium chloride giving a new reaction pathway, Electrochim. Acta 56, 3286–3295 (2011)CrossRef
[99]
Zurück zum Zitat W. Li, X. Jin, F. Huang, G.Z. Chen: Metal-to-oxide molar volume ratio: The overlooked barrier to solid-state electroreduction and a green bypass through recyclable NH4HCO3, Angew. Chem. Int. Ed. 49, 3203–3206 (2010)CrossRef W. Li, X. Jin, F. Huang, G.Z. Chen: Metal-to-oxide molar volume ratio: The overlooked barrier to solid-state electroreduction and a green bypass through recyclable NH4HCO3, Angew. Chem. Int. Ed. 49, 3203–3206 (2010)CrossRef
[100]
Zurück zum Zitat H. Chen, Y. Zeng, W. Li, J. Peng, X. Jin, G.Z. Chen: A PRS model for accurate prediction of the optimal solid oxide cathode structure for the preparation of metals in molten chlorides, Electrochem. Commun. 26, 33–36 (2013)CrossRef H. Chen, Y. Zeng, W. Li, J. Peng, X. Jin, G.Z. Chen: A PRS model for accurate prediction of the optimal solid oxide cathode structure for the preparation of metals in molten chlorides, Electrochem. Commun. 26, 33–36 (2013)CrossRef
[101]
Zurück zum Zitat A.J. Fenn, G. Cooley, D. Fray, L. Smith: Exploiting the FFC Cambridge process, Adv. Mater. Process. 162, 51 (2004) A.J. Fenn, G. Cooley, D. Fray, L. Smith: Exploiting the FFC Cambridge process, Adv. Mater. Process. 162, 51 (2004)
[102]
Zurück zum Zitat D. Wang, X. Jin, G.Z. Chen: Solid state reactions: An electrochemical approach in molten salts, Phys. Chem. 104, 189–234 (2008) D. Wang, X. Jin, G.Z. Chen: Solid state reactions: An electrochemical approach in molten salts, Phys. Chem. 104, 189–234 (2008)
[103]
Zurück zum Zitat S. Jiao, D. Fray: Development of an inert anode for electrowinning in calcium chloride-calcium oxide melts, Met. Mater. Trans. B 41, 74–79 (2010)CrossRef S. Jiao, D. Fray: Development of an inert anode for electrowinning in calcium chloride-calcium oxide melts, Met. Mater. Trans. B 41, 74–79 (2010)CrossRef
[104]
Zurück zum Zitat S. Jiao, L. Zhang, H. Zhu, D.J. Fray: Production of NiTi shape memory alloys via electro-deoxidation utilizing an inert anode, Electrochim. Acta 55, 7016–7020 (2010)CrossRef S. Jiao, L. Zhang, H. Zhu, D.J. Fray: Production of NiTi shape memory alloys via electro-deoxidation utilizing an inert anode, Electrochim. Acta 55, 7016–7020 (2010)CrossRef
[105]
Zurück zum Zitat H. Yin, L. Gao, H. Zhu, X. Mao, F. Gan, D. Wang: On the development of metallic inert anode for molten CaCl2-CaO System, Electrochim. Acta 56, 3296–3302 (2011)CrossRef H. Yin, L. Gao, H. Zhu, X. Mao, F. Gan, D. Wang: On the development of metallic inert anode for molten CaCl2-CaO System, Electrochim. Acta 56, 3296–3302 (2011)CrossRef
[106]
Zurück zum Zitat B. Zhao, X. Lu, Q. Zhong, C. Li, S. Chen: Direct electrochemical preparation of CeNi5 and LaxCe1-xNi5 alloys from mixed oxides by SOM process, Electrochim. Acta 55, 2996–3001 (2010)CrossRef B. Zhao, X. Lu, Q. Zhong, C. Li, S. Chen: Direct electrochemical preparation of CeNi5 and LaxCe1-xNi5 alloys from mixed oxides by SOM process, Electrochim. Acta 55, 2996–3001 (2010)CrossRef
[107]
Zurück zum Zitat X.J. Liao, H.W. Xie, Y.C. Zhai, Y. Zhang: Preparation of Al3Sc intermetallic compound by FFC method, J. Mater. Sci. Technol. 25, 717–720 (2009) X.J. Liao, H.W. Xie, Y.C. Zhai, Y. Zhang: Preparation of Al3Sc intermetallic compound by FFC method, J. Mater. Sci. Technol. 25, 717–720 (2009)
[108]
Zurück zum Zitat M. Jackson, K. Dring: A review of advances in processing and metallurgy of titanium alloys, Mater. Sci. Technol. 22, 881–887 (2006)CrossRef M. Jackson, K. Dring: A review of advances in processing and metallurgy of titanium alloys, Mater. Sci. Technol. 22, 881–887 (2006)CrossRef
[109]
Zurück zum Zitat G. Qiu, D. Wang, X. Jin, G.Z. Chen: A direct electrochemical route from oxide precursors to the terbium-nickel intermetallic compound TbNi5, Electrochim. Acta 51, 5785–5793 (2006)CrossRef G. Qiu, D. Wang, X. Jin, G.Z. Chen: A direct electrochemical route from oxide precursors to the terbium-nickel intermetallic compound TbNi5, Electrochim. Acta 51, 5785–5793 (2006)CrossRef
[110]
Zurück zum Zitat G. Qiu, D. Wang, M. Ma, X. Jin, G.Z. Chen: Electrolytic synthesis of TbFe2 from Tb4O7 and Fe2O3 powders in molten CaCl2, J. Electroanal. Chem. 589, 139–147 (2006)CrossRef G. Qiu, D. Wang, M. Ma, X. Jin, G.Z. Chen: Electrolytic synthesis of TbFe2 from Tb4O7 and Fe2O3 powders in molten CaCl2, J. Electroanal. Chem. 589, 139–147 (2006)CrossRef
[111]
Zurück zum Zitat Y. Zhu, D. Wang, M. Ma, X. Hu, X. Jin, G.Z. Chen: More affordable electrolytic LaNi5-type hydrogen storage powders, Chem. Commun., 2515–2517 (2007) Y. Zhu, D. Wang, M. Ma, X. Hu, X. Jin, G.Z. Chen: More affordable electrolytic LaNi5-type hydrogen storage powders, Chem. Commun., 2515–2517 (2007)
[112]
Zurück zum Zitat J. Peng, Y. Zhu, D. Wang, X. Jin, G.Z. Chen: Direct and low energy electrolytic co-reduction of mixed oxides to zirconium-based multi-phase hydrogen storage alloys in molten salts, J. Mater. Chem. 19, 2803–2809 (2009)CrossRef J. Peng, Y. Zhu, D. Wang, X. Jin, G.Z. Chen: Direct and low energy electrolytic co-reduction of mixed oxides to zirconium-based multi-phase hydrogen storage alloys in molten salts, J. Mater. Chem. 19, 2803–2809 (2009)CrossRef
[113]
Zurück zum Zitat B.J. Zhao, L. Wang, L. Dai, G.G. Cui, H.Z. Zhou, R.V. Kumar: Direct electrolytic preparation of cerium/nickel hydrogen storage alloy powder in molten salt, J. Alloy. Compd. 468, 379–385 (2009)CrossRef B.J. Zhao, L. Wang, L. Dai, G.G. Cui, H.Z. Zhou, R.V. Kumar: Direct electrolytic preparation of cerium/nickel hydrogen storage alloy powder in molten salt, J. Alloy. Compd. 468, 379–385 (2009)CrossRef
[114]
Zurück zum Zitat J. Peng, K. Jiang, W. Xiao, D. Wang, X. Jin, G.Z. Chen: Electrochemical conversion of oxide precursors to consolidated Zr and Zr-2.5Nb Tubes, Chem. Mater. 20, 7274–7280 (2008)CrossRef J. Peng, K. Jiang, W. Xiao, D. Wang, X. Jin, G.Z. Chen: Electrochemical conversion of oxide precursors to consolidated Zr and Zr-2.5Nb Tubes, Chem. Mater. 20, 7274–7280 (2008)CrossRef
[115]
Zurück zum Zitat Y. Zhu, M. Ma, D. Wang, K. Jiang, X. Hu, X. Jin, G. Chen: Electrolytic reduction of mixed solid oxides in molten salts for energy efficient production of the TiNi alloy, Chin. Sci. Bull. 51, 2535–2540 (2006)CrossRef Y. Zhu, M. Ma, D. Wang, K. Jiang, X. Hu, X. Jin, G. Chen: Electrolytic reduction of mixed solid oxides in molten salts for energy efficient production of the TiNi alloy, Chin. Sci. Bull. 51, 2535–2540 (2006)CrossRef
[116]
Zurück zum Zitat R. Bhagat, M. Jackson, D. Inman, R. Dashwood: Production of Ti–W alloys from mixed oxide precursors via the FFC Cambridge process, J. Electrochem. Soc. 156, E1–E7 (2009)CrossRef R. Bhagat, M. Jackson, D. Inman, R. Dashwood: Production of Ti–W alloys from mixed oxide precursors via the FFC Cambridge process, J. Electrochem. Soc. 156, E1–E7 (2009)CrossRef
[117]
Zurück zum Zitat M. Jolly: Castings. In: Comprehensive Structural Integrity, ed. by I. Milne, R.O. Ritchie, B. Karihaloo (Elsevier, Oxford 2003) pp. 377–466CrossRef M. Jolly: Castings. In: Comprehensive Structural Integrity, ed. by I. Milne, R.O. Ritchie, B. Karihaloo (Elsevier, Oxford 2003) pp. 377–466CrossRef
[118]
Zurück zum Zitat V. Moxson, O. Senkov, F. Froes: Innovations in titanium powder processing, J. Min. Met. Mater. Soc. 52, 24–26 (2000)CrossRef V. Moxson, O. Senkov, F. Froes: Innovations in titanium powder processing, J. Min. Met. Mater. Soc. 52, 24–26 (2000)CrossRef
[119]
Zurück zum Zitat P.J. Bridges, B. Magnus: Manufacture of titanium alloy components for aerospace and military applications, Proc. RTO Appl. Veh. Technol. Panel (AVT) Specialists’ Meet. (NATO Research and Technology Organisation, Oslo 2001) P.J. Bridges, B. Magnus: Manufacture of titanium alloy components for aerospace and military applications, Proc. RTO Appl. Veh. Technol. Panel (AVT) Specialists’ Meet. (NATO Research and Technology Organisation, Oslo 2001)
[120]
Zurück zum Zitat E.O. Ezugwu, Z.M. Wang: Titanium alloys and their machinability – A review, J. Mater. Process. Technol. 68, 262–274 (1997)CrossRef E.O. Ezugwu, Z.M. Wang: Titanium alloys and their machinability – A review, J. Mater. Process. Technol. 68, 262–274 (1997)CrossRef
[121]
Zurück zum Zitat D. Hu, W. Xiao, G.Z. Chen: Near-net-shape production of hollow titanium alloy components via electrochemical reduction of metal oxide precursors in molten salts, Met. Mater. Trans. B 44, 272–282 (2013)CrossRef D. Hu, W. Xiao, G.Z. Chen: Near-net-shape production of hollow titanium alloy components via electrochemical reduction of metal oxide precursors in molten salts, Met. Mater. Trans. B 44, 272–282 (2013)CrossRef
[122]
Zurück zum Zitat F.H. Froes, M. Gungor, M. Ashraf Imam: Cost-affordable titanium: The component fabrication perspective, J. Min. Met. Mater. Soc. 59, 28–31 (2007)CrossRef F.H. Froes, M. Gungor, M. Ashraf Imam: Cost-affordable titanium: The component fabrication perspective, J. Min. Met. Mater. Soc. 59, 28–31 (2007)CrossRef
[123]
Zurück zum Zitat D.J. Fray, Z. Chen, T.W. Farthing, Fabrication of metal articles by electrolysis of preshaped metal compounds in a fused salt, EHR Patent EP1333110B1 (2010) D.J. Fray, Z. Chen, T.W. Farthing, Fabrication of metal articles by electrolysis of preshaped metal compounds in a fused salt, EHR Patent EP1333110B1 (2010)
[124]
Zurück zum Zitat F.H. Froes, M.A. Iman, D.J. Fray (Eds.): Cost affordable titanium, Proc. Light Metals, Charlotte 2004) F.H. Froes, M.A. Iman, D.J. Fray (Eds.): Cost affordable titanium, Proc. Light Metals, Charlotte 2004)
[125]
Zurück zum Zitat F.H. Froes, M. Ashraf Imam: Cost affordable developments in titanium technology and applications, Key Eng. Mater. 436, 1–11 (2010)CrossRef F.H. Froes, M. Ashraf Imam: Cost affordable developments in titanium technology and applications, Key Eng. Mater. 436, 1–11 (2010)CrossRef
Metadaten
Titel
Advanced Extractive Electrometallurgy
verfasst von
Di Hu
George Z. Chen
Copyright-Jahr
2017
Verlag
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-662-46657-5_25