Skip to main content
Top

2020 | OriginalPaper | Chapter

9. Physics-Informed Data-Driven Prediction of Turbulent Reacting Flows with Lyapunov Analysis and Sequential Data Assimilation

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

High-fidelity simulations of turbulent reacting flows enable scientific understanding of the physics and engineering design of practical systems. Whereas Direct Numerical Simulation (DNS) is the most suitable numerical tool to understand the physics, under-resolved and large-eddy simulations offer a good compromise between accuracy and computational effort in the prediction of engineering flows. This compromise speeds up the computations but reduces the space-and-time accuracy of the prediction. The objective of this chapter is to (i) evaluate the predictability horizon of turbulent simulations with chaos theory, and (ii) enable the space-and-time-accurate prediction of rare and transient events using a Bayesian statistical learning approach based on data assimilation. The methods are applied to DNS of Moderate or Intense Low-oxygen Dilution (MILD) combustion. The predictability provides an estimate of the time horizon within which the occurrence of ignition kernels and deflagrative modes, which are considered here as rare and transient events, can be accurately predicted. The accurate detection of ignition kernels and their evolution towards deflagrative structures are well captured on a coarse (under-resolved) grid when data is assimilated from a costly refined DNS. Physically, such an accurate prediction is important to understand the stabilization mechanism of MILD combustion. These techniques enable the space-and-time-accurate prediction of rare and transient events in turbulent flows by combining under-resolved simulations and experimental data, for example, from engine sensors. This opens up new possibilities for on-the-fly calibration of reduced-order models for turbulent reacting flows.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference J.L. Anderson, S.L. Anderson, A Monte Carlo implementation of the nonlinear filtering problem to produce ensemble assimilations and forecasts. Mon. Weather Rev. 127(12), 2741–2758 (2002)CrossRef J.L. Anderson, S.L. Anderson, A Monte Carlo implementation of the nonlinear filtering problem to produce ensemble assimilations and forecasts. Mon. Weather Rev. 127(12), 2741–2758 (2002)CrossRef
2.
go back to reference R. Bellman, Dynamic Programming (Dover Publications, New York, 2003) R. Bellman, Dynamic Programming (Dover Publications, New York, 2003)
3.
go back to reference R.W. Bilger, S.H. Starner, R.J. Kee, On reduced mechanisms for methane-air combustion in nonpremixed flames. Combust. Flame 80, 135–149 (1990)CrossRef R.W. Bilger, S.H. Starner, R.J. Kee, On reduced mechanisms for methane-air combustion in nonpremixed flames. Combust. Flame 80, 135–149 (1990)CrossRef
4.
go back to reference P.J. Blonigan, P. Fernandez, S.M. Murman, Q. Wang, G. Rigas, L. Magri, Towards a chaotic adjoint for LES, Center for Turbulence Research, Summer Program (2016) P.J. Blonigan, P. Fernandez, S.M. Murman, Q. Wang, G. Rigas, L. Magri, Towards a chaotic adjoint for LES, Center for Turbulence Research, Summer Program (2016)
5.
go back to reference G. Boffetta, M. Cencini, M. Falcioni, A. Vulpiani, Predictability: a way to characterize complexity. Phys. Rep. 356, 367–474 (2002)MathSciNetCrossRef G. Boffetta, M. Cencini, M. Falcioni, A. Vulpiani, Predictability: a way to characterize complexity. Phys. Rep. 356, 367–474 (2002)MathSciNetCrossRef
6.
go back to reference G. Burgers, P.J. van Leeuwen, G. Evensen, Analysis scheme in the ensemble Kalman filter. Mon. Weather Rev. 126(6), 1719–1724 (1998)CrossRef G. Burgers, P.J. van Leeuwen, G. Evensen, Analysis scheme in the ensemble Kalman filter. Mon. Weather Rev. 126(6), 1719–1724 (1998)CrossRef
7.
go back to reference R. S. Cant. SENGA2 User Guide (CUED-THERMO-2012/04, 2nd edn.). Technical report, University of Cambridge (2013) R. S. Cant. SENGA2 User Guide (CUED-THERMO-2012/04, 2nd edn.). Technical report, University of Cambridge (2013)
8.
go back to reference A. Cavaliere, M. de Joannon, MILD combustion. Prog. Energy Combust. Sci. 30, 329–366 (2004) A. Cavaliere, M. de Joannon, MILD combustion. Prog. Energy Combust. Sci. 30, 329–366 (2004)
9.
go back to reference A.F.C. da Silva, T. Colonius, Ensemble-based state estimator for aerodynamic flows. AIAA J. 56(7), 2568–2578 (2018) A.F.C. da Silva, T. Colonius, Ensemble-based state estimator for aerodynamic flows. AIAA J. 56(7), 2568–2578 (2018)
10.
go back to reference D. Darakananda, A.F.D.C. da Silva, T. Colonius, J.D. Eldredge, Data-assimilated low-order vortex modeling of separated flows. Phys. Rev. Fluids 3(12), 1–24 (2018) D. Darakananda, A.F.D.C. da Silva, T. Colonius, J.D. Eldredge, Data-assimilated low-order vortex modeling of separated flows. Phys. Rev. Fluids 3(12), 1–24 (2018)
11.
go back to reference N.A.K. Doan, N. Swaminathan, Autoignition and flame propagation in non-premixed MILD combustion. Combust. Flame 201, 234–243 (2019)CrossRef N.A.K. Doan, N. Swaminathan, Autoignition and flame propagation in non-premixed MILD combustion. Combust. Flame 201, 234–243 (2019)CrossRef
12.
go back to reference N.A.K. Doan, N. Swaminathan, Analysis of markers for combustion mode and heat release in MILD combustion using DNS data. Combust. Sci. Technol. 191(5–6), 1059–1078 (2019)CrossRef N.A.K. Doan, N. Swaminathan, Analysis of markers for combustion mode and heat release in MILD combustion using DNS data. Combust. Sci. Technol. 191(5–6), 1059–1078 (2019)CrossRef
13.
go back to reference N.A.K. Doan, N. Swaminathan, Y. Minamoto, DNS of MILD combustion with mixture fraction variations. Combust. Flame 189, 173–189 (2018)CrossRef N.A.K. Doan, N. Swaminathan, Y. Minamoto, DNS of MILD combustion with mixture fraction variations. Combust. Flame 189, 173–189 (2018)CrossRef
14.
go back to reference A. Doucet, N. Freitas, N. Gordon (eds.), Sequential Monte Carlo Methods in Practice (Springer, New York, 2001)MATH A. Doucet, N. Freitas, N. Gordon (eds.), Sequential Monte Carlo Methods in Practice (Springer, New York, 2001)MATH
15.
16.
go back to reference V. Eswaran, S.B. Pope, Direct numerical simulations of the turbulent mixing of a passive scalar. Phys. Fluids 31(3), 506–520 (1988)CrossRef V. Eswaran, S.B. Pope, Direct numerical simulations of the turbulent mixing of a passive scalar. Phys. Fluids 31(3), 506–520 (1988)CrossRef
17.
go back to reference G. Evensen, Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics. J. Geophys. Res. 99(C5), 10143 (1994)CrossRef G. Evensen, Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics. J. Geophys. Res. 99(C5), 10143 (1994)CrossRef
18.
go back to reference G. Evensen, Data Assimilation - The Ensemble Kalman Filter (Springer, Berlin, 2009) G. Evensen, Data Assimilation - The Ensemble Kalman Filter (Springer, Berlin, 2009)
19.
20.
go back to reference P. Fernandez, Q. Wang, Lyapunov spectrum of the separated flow around the NACA 0012 airfoil and its dependence on numerical discretization. J. Comput. Phys. 350, 453–469 (2017)MathSciNetCrossRef P. Fernandez, Q. Wang, Lyapunov spectrum of the separated flow around the NACA 0012 airfoil and its dependence on numerical discretization. J. Comput. Phys. 350, 453–469 (2017)MathSciNetCrossRef
21.
go back to reference F. Ginelli, H. Chate, R. Livi, A. Politi, Covariant Lyapunov vectors. J. Phys. A: Math. Theor. 46(25), 254005 (2013)MathSciNetCrossRef F. Ginelli, H. Chate, R. Livi, A. Politi, Covariant Lyapunov vectors. J. Phys. A: Math. Theor. 46(25), 254005 (2013)MathSciNetCrossRef
22.
go back to reference I. Goldhirsch, P.-L. Sulem, S.A. Orszag, Stability and Lyapunov stability of dynamical systems: a differential approach and a numerical method. Phys. D: Nonlinear Phenom. 27(3), 311–337 (1987)MathSciNetCrossRef I. Goldhirsch, P.-L. Sulem, S.A. Orszag, Stability and Lyapunov stability of dynamical systems: a differential approach and a numerical method. Phys. D: Nonlinear Phenom. 27(3), 311–337 (1987)MathSciNetCrossRef
23.
go back to reference M. Hassanaly, V. Raman, Ensemble-LES analysis of perturbation response of turbulent partially-premixed flames. Proc. Combust. Inst. 37(2), 2249–2257 (2019)CrossRef M. Hassanaly, V. Raman, Ensemble-LES analysis of perturbation response of turbulent partially-premixed flames. Proc. Combust. Inst. 37(2), 2249–2257 (2019)CrossRef
24.
go back to reference R.C. Hilborn, Chaos and Nonlinear Dynamics (Oxford University Press, Oxford, 1994) R.C. Hilborn, Chaos and Nonlinear Dynamics (Oxford University Press, Oxford, 1994)
25.
go back to reference F. Huhn, L. Magri, Stability, sensitivity and optimisation of chaotic acoustic oscillations. J. Fluid Mech. 882, A24 (2020) F. Huhn, L. Magri, Stability, sensitivity and optimisation of chaotic acoustic oscillations. J. Fluid Mech. 882, A24 (2020)
27.
28.
go back to reference J.W. Labahn, H. Wu, B. Coriton, J.H. Frank, M. Ihme, Data assimilation using high-speed measurements and LES to examine local extinction events in turbulent flames. Proc. Combust. Inst. 37(2), 2259–2266 (2019)CrossRef J.W. Labahn, H. Wu, B. Coriton, J.H. Frank, M. Ihme, Data assimilation using high-speed measurements and LES to examine local extinction events in turbulent flames. Proc. Combust. Inst. 37(2), 2259–2266 (2019)CrossRef
30.
go back to reference Y. Minamoto, N. Swaminathan, R.S. Cant, T. Leung, Morphological and statistical features of reaction zones in MILD and premixed combustion. Combust. Flame 161(11), 2801–2814 (2014)CrossRef Y. Minamoto, N. Swaminathan, R.S. Cant, T. Leung, Morphological and statistical features of reaction zones in MILD and premixed combustion. Combust. Flame 161(11), 2801–2814 (2014)CrossRef
31.
go back to reference P. Mohan, N. Fitzsimmons, R.D. Moser, Scaling of Lyapunov exponents in homogeneous isotropic turbulence. Phys. Rev. Fluids 2, 114606 (2017)CrossRef P. Mohan, N. Fitzsimmons, R.D. Moser, Scaling of Lyapunov exponents in homogeneous isotropic turbulence. Phys. Rev. Fluids 2, 114606 (2017)CrossRef
32.
go back to reference G. Nastac, J. Labahn, L. Magri, M. Ihme, Lyapunov exponent as a metric for assessing the dynamic content and predictability of large-eddy simulations. Phys. Rev. Fluids 2(9), 094606 (2017)CrossRef G. Nastac, J. Labahn, L. Magri, M. Ihme, Lyapunov exponent as a metric for assessing the dynamic content and predictability of large-eddy simulations. Phys. Rev. Fluids 2(9), 094606 (2017)CrossRef
33.
go back to reference A. Ni, Q. Wang, Sensitivity analysis on chaotic dynamical systems by non-intrusive least squares shadowing (NILSS). J. Comput. Phys. 347, 56–77 (2017)MathSciNetCrossRef A. Ni, Q. Wang, Sensitivity analysis on chaotic dynamical systems by non-intrusive least squares shadowing (NILSS). J. Comput. Phys. 347, 56–77 (2017)MathSciNetCrossRef
34.
go back to reference V.I. Oseledets, A multiplicative ergodic theorem: Lyapunov characteristic numbers for dynamical systems. Trans. Mosc. Math. Soc. 19, 197–231 (1968)MATH V.I. Oseledets, A multiplicative ergodic theorem: Lyapunov characteristic numbers for dynamical systems. Trans. Mosc. Math. Soc. 19, 197–231 (1968)MATH
35.
go back to reference I.B. Özdemir, N. Peters, Characteristics of the reaction zone in a combustor operating at MILD combustion. Exp. Fluids 30, 683–695 (2001)CrossRef I.B. Özdemir, N. Peters, Characteristics of the reaction zone in a combustor operating at MILD combustion. Exp. Fluids 30, 683–695 (2001)CrossRef
36.
go back to reference T. Poinsot, Boundary conditions for direct simulations of compressible viscous flows. J. Comput. Phys. 101, 104–129 (1992)MathSciNetCrossRef T. Poinsot, Boundary conditions for direct simulations of compressible viscous flows. J. Comput. Phys. 101, 104–129 (1992)MathSciNetCrossRef
37.
go back to reference S.B. Pope, Ten questions concerning the large-eddy simulation of turbulent flows. New J. Phys. 6 (2004)CrossRef S.B. Pope, Ten questions concerning the large-eddy simulation of turbulent flows. New J. Phys. 6 (2004)CrossRef
38.
go back to reference D. Ruelle, Ergodic theory of differentiable dynamical systems. Publications mathematiques de l’IHES 50(1), 27–58 (1979)MathSciNetCrossRef D. Ruelle, Ergodic theory of differentiable dynamical systems. Publications mathematiques de l’IHES 50(1), 27–58 (1979)MathSciNetCrossRef
39.
go back to reference P.J. van Leeuwen, Comment on “Data assimilation using an ensemble Kalman filter technique”. Mon. Weather Rev. 127(6), 1374–1377 (2002)CrossRef P.J. van Leeuwen, Comment on “Data assimilation using an ensemble Kalman filter technique”. Mon. Weather Rev. 127(6), 1374–1377 (2002)CrossRef
40.
go back to reference J.S. Whitaker, T.M. Hamill, Ensemble data assimilation without perturbed observations. Mon. Weather Rev. 130(7), 1913–1924 (2002)CrossRef J.S. Whitaker, T.M. Hamill, Ensemble data assimilation without perturbed observations. Mon. Weather Rev. 130(7), 1913–1924 (2002)CrossRef
41.
go back to reference J.S. Whitaker, T.M. Hamill, Evaluating methods to account for system errors in ensemble data assimilation. Mon. Weather Rev. 140(9), 3078–3089 (2012)CrossRef J.S. Whitaker, T.M. Hamill, Evaluating methods to account for system errors in ensemble data assimilation. Mon. Weather Rev. 140(9), 3078–3089 (2012)CrossRef
42.
go back to reference H. Yu, T. Jaravel, M. Juniper, M. Ihme, L. Magri, Data assimilation and optimal calibration in nonlinear models of flame dynamics. J. Eng. Gas Turb. Power 141(2), 121010 (2019) H. Yu, T. Jaravel, M. Juniper, M. Ihme, L. Magri, Data assimilation and optimal calibration in nonlinear models of flame dynamics. J. Eng. Gas Turb. Power 141(2), 121010 (2019)
43.
go back to reference H. Yu, M.P. Juniper, L. Magri, Combined state and parameter estimation in level-set methods. J. Comput. Phys. 399, 108950 (2019)MathSciNetCrossRef H. Yu, M.P. Juniper, L. Magri, Combined state and parameter estimation in level-set methods. J. Comput. Phys. 399, 108950 (2019)MathSciNetCrossRef
Metadata
Title
Physics-Informed Data-Driven Prediction of Turbulent Reacting Flows with Lyapunov Analysis and Sequential Data Assimilation
Authors
Luca Magri
Nguyen Anh Khoa Doan
Copyright Year
2020
DOI
https://doi.org/10.1007/978-3-030-44718-2_9

Premium Partner