Skip to main content
Top
Published in: Journal of Materials Science 9/2018

12-01-2018 | Energy materials

Piezoelectric behavior of three-dimensionally printed acrylate polymer without filler or poling

Authors: Patatri Chakraborty, Chi Zhou, D. D. L. Chung

Published in: Journal of Materials Science | Issue 9/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

We report the piezoelectric behavior of three-dimensionally layer-by-layer printed (bottom-up stereolithography, 21–46-µm layer thickness) polymer without filler or poling, using unmodified ultraviolet-curable resins (acrylate ester for Resin 1, and methacrylated monomers/oligomers for Resin 2) that are not known to be piezoelectric. The smaller is the layer thickness, the greater is the shear stress in printing, the more is the molecular alignment, the higher is the out-of-plane electric permittivity, and the stronger is the out-of-plane direct piezoelectric effect, as shown by the electric field output decreasing reversibly and the capacitance increasing reversibly upon out-of-plane compression (stress ≥ 0.3 kPa). The piezoelectric effect is not merely due to the applied stress increasing the permittivity. The decrease in the electric field output is quite linear up to a stress of ~ 33 kPa. Decrease in the layer thickness from 46 to 26 µm increases the relative permittivity from 5.3 to 6.1 and increases the piezoelectric coupling coefficient d from 0.13 to 0.24 pC/N. Resin 2 gives a higher d than Resin 1 (0.43 vs. 0.24 pC/N), probably due to the higher viscosity and consequent higher shear stress during printing. The fractional change in capacitance due to the applied stress increases with decreasing layer thickness, is greater for Resin 2 than Resin 1, and increases with decreasing applied electric field, which causes a converse piezoelectric effect. The capacitance increases with increasing applied electric field used to measure the capacitance. The fractional change in capacitance due to the applied electric field decreases with increasing stress.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Lee J, An J, Chua CK (2017) Fundamentals and applications of 3D printing for novel materials. Appl Mater Today 7:120–133CrossRef Lee J, An J, Chua CK (2017) Fundamentals and applications of 3D printing for novel materials. Appl Mater Today 7:120–133CrossRef
2.
go back to reference MacDonald E, Wicker R (2016) Multiprocess 3D printing for increasing component functionality. Science 353(6307):aaf2093-1–aaf2093-8CrossRef MacDonald E, Wicker R (2016) Multiprocess 3D printing for increasing component functionality. Science 353(6307):aaf2093-1–aaf2093-8CrossRef
3.
go back to reference Mondschein RJ, Kanitkar A, Williams CB, Verbridge SS, Long TE (2017) Polymer structure-property requirements for stereolithographic 3D printing of soft tissue engineering scaffolds. Biomaterials 140:170–188CrossRef Mondschein RJ, Kanitkar A, Williams CB, Verbridge SS, Long TE (2017) Polymer structure-property requirements for stereolithographic 3D printing of soft tissue engineering scaffolds. Biomaterials 140:170–188CrossRef
4.
go back to reference Jeong CG, Atala A (2015) 3D printing and biofabrication for load bearing tissue engineering. Adv Exp Med Biol 881:3–14CrossRef Jeong CG, Atala A (2015) 3D printing and biofabrication for load bearing tissue engineering. Adv Exp Med Biol 881:3–14CrossRef
5.
go back to reference Ratheesh G, Venugopal JR, Chinappan A, Ezhilarasu H, Sadiq A, Ramakrishna S (2017) 3D fabrication of polymeric scaffolds for regenerative therapy. ACS Biomater Sci Eng 3(7):1175–1194CrossRef Ratheesh G, Venugopal JR, Chinappan A, Ezhilarasu H, Sadiq A, Ramakrishna S (2017) 3D fabrication of polymeric scaffolds for regenerative therapy. ACS Biomater Sci Eng 3(7):1175–1194CrossRef
6.
go back to reference Low Z, Chua YT, Ray BM, Mattia D, Metcalfe IS, Patterson DA (2017) Perspective on 3D printing of separation membranes and comparison to related unconventional fabrication techniques. J Membr Sci 523:596–613CrossRef Low Z, Chua YT, Ray BM, Mattia D, Metcalfe IS, Patterson DA (2017) Perspective on 3D printing of separation membranes and comparison to related unconventional fabrication techniques. J Membr Sci 523:596–613CrossRef
7.
go back to reference Kim K, Zhu W, Qu X, Aaronson C, McCall WR, Chen S, Sirbuly DJ (2014) 3D optical printing of piezoelectric nanoparticle-polymer composite materials. ACS Nano 8(10):9799–9806CrossRef Kim K, Zhu W, Qu X, Aaronson C, McCall WR, Chen S, Sirbuly DJ (2014) 3D optical printing of piezoelectric nanoparticle-polymer composite materials. ACS Nano 8(10):9799–9806CrossRef
8.
go back to reference Kim H, Torres F, Villagran D, Stewart C, Lin Y, Tseng TB (2017) 3D printing of BaTiO3/PVDF composites with electric in situ poling for pressure sensor applications. Macromol Mater Eng 302:1700229CrossRef Kim H, Torres F, Villagran D, Stewart C, Lin Y, Tseng TB (2017) 3D printing of BaTiO3/PVDF composites with electric in situ poling for pressure sensor applications. Macromol Mater Eng 302:1700229CrossRef
9.
go back to reference Chen Z, Song X, Lei L, Chen X, Fei C, Chiu CT, Qian X, Ma T, Yang Y, Shung K, Chen Y, Zhou Q (2016) 3D printing of piezoelectric element for energy focusing and ultrasonic sensing. Nano Energy 27:78–86CrossRef Chen Z, Song X, Lei L, Chen X, Fei C, Chiu CT, Qian X, Ma T, Yang Y, Shung K, Chen Y, Zhou Q (2016) 3D printing of piezoelectric element for energy focusing and ultrasonic sensing. Nano Energy 27:78–86CrossRef
10.
go back to reference Song X, Chen Z, Lei L, Shung K, Zhou Q, Chen Y (2017) Piezoelectric component fabrication using projection-based stereolithography of barium titanate ceramic suspensions. Rapid Prototyp J 23(1):44–53CrossRef Song X, Chen Z, Lei L, Shung K, Zhou Q, Chen Y (2017) Piezoelectric component fabrication using projection-based stereolithography of barium titanate ceramic suspensions. Rapid Prototyp J 23(1):44–53CrossRef
11.
go back to reference Bodkhe S, Turcot G, Gosselin FP, Therriault D (2017) One-step solvent evaporation-assisted 3D printing of piezoelectric pvdf nanocomposite structures. ACS Appl Mater Interfaces 9:20833–20842CrossRef Bodkhe S, Turcot G, Gosselin FP, Therriault D (2017) One-step solvent evaporation-assisted 3D printing of piezoelectric pvdf nanocomposite structures. ACS Appl Mater Interfaces 9:20833–20842CrossRef
12.
go back to reference Chabok H, Zhou C, Chen Y, Eskandarinazhad A, Zhou Q, Shung K (2012) Proceedings of ASME 2012 international symposium on flexible automation 2012, ISFA2012-7119 Chabok H, Zhou C, Chen Y, Eskandarinazhad A, Zhou Q, Shung K (2012) Proceedings of ASME 2012 international symposium on flexible automation 2012, ISFA2012-7119
13.
go back to reference Kim H, Torres F, Wu Y, Villagran D, Lin Y, Tseng T (2017) Integrated 3D printing and corona poling process of PVDF piezoelectric films for pressure sensor application. Smart Mater Struct 26:085027CrossRef Kim H, Torres F, Wu Y, Villagran D, Lin Y, Tseng T (2017) Integrated 3D printing and corona poling process of PVDF piezoelectric films for pressure sensor application. Smart Mater Struct 26:085027CrossRef
14.
go back to reference Lee C, Tarbutton JA (2014) Electric poling-assisted additive manufacturing process for PVDF polymerbased piezoelectric device application. Smart Mater Struct 23:095044CrossRef Lee C, Tarbutton JA (2014) Electric poling-assisted additive manufacturing process for PVDF polymerbased piezoelectric device application. Smart Mater Struct 23:095044CrossRef
15.
go back to reference Ramadan KS, Sameoto D, Evoy S (2014) A review of piezoelectric polymers as functional materials for electromechanical transducers. Smart Mater Struct 23(3):033001/1–033001/26CrossRef Ramadan KS, Sameoto D, Evoy S (2014) A review of piezoelectric polymers as functional materials for electromechanical transducers. Smart Mater Struct 23(3):033001/1–033001/26CrossRef
16.
go back to reference Zhang Q, Cheng Z, Bharti V, Xu T, Xu HS, Mai TX, Gross SJ (2000) Piezoelectric and electrostrictive polymeric actuator materials. In: Proceedings of SPIE—international society for optical engineering (electroactive polymer actuators and devices (EAPAD)), vol 3987, pp 34–50 Zhang Q, Cheng Z, Bharti V, Xu T, Xu HS, Mai TX, Gross SJ (2000) Piezoelectric and electrostrictive polymeric actuator materials. In: Proceedings of SPIE—international society for optical engineering (electroactive polymer actuators and devices (EAPAD)), vol 3987, pp 34–50
17.
go back to reference Blaeser A, Duarte C, Daniela F, Puster U, Richtering W, Stevens MM, Fischer H (2016) Controlling shear stress in 3D bioprinting is a key factor to balance printing resolution and stem cell integrity. Adv Healthc Mater 5(3):326–333CrossRef Blaeser A, Duarte C, Daniela F, Puster U, Richtering W, Stevens MM, Fischer H (2016) Controlling shear stress in 3D bioprinting is a key factor to balance printing resolution and stem cell integrity. Adv Healthc Mater 5(3):326–333CrossRef
18.
go back to reference Gundrati NB, Chakraborty P, Zhou C, Chung DDL (2018) Effects of printing conditions on the molecular alignment of three-dimensionally printed polymer. Compos B 134:164–168CrossRef Gundrati NB, Chakraborty P, Zhou C, Chung DDL (2018) Effects of printing conditions on the molecular alignment of three-dimensionally printed polymer. Compos B 134:164–168CrossRef
19.
go back to reference Chakraborty P, Gundrati NB, Zhou C, Chung DDL (2017) Effect of stress on the capacitance and electric permittivity of three-dimensionally printed polymer, with relevance to capacitance-based stress monitoring. Sens Actuators A 263C:380–385CrossRef Chakraborty P, Gundrati NB, Zhou C, Chung DDL (2017) Effect of stress on the capacitance and electric permittivity of three-dimensionally printed polymer, with relevance to capacitance-based stress monitoring. Sens Actuators A 263C:380–385CrossRef
20.
go back to reference Bootsma K, Fitzgerald MM, Free B, Dimbath E, Conjerti J, Reese G, Sparks JL (2017) 3D printing of an interpenetrating network hydrogel material with tunable viscoelastic properties. J Mech Behav Biomed Mater 70:84–94CrossRef Bootsma K, Fitzgerald MM, Free B, Dimbath E, Conjerti J, Reese G, Sparks JL (2017) 3D printing of an interpenetrating network hydrogel material with tunable viscoelastic properties. J Mech Behav Biomed Mater 70:84–94CrossRef
21.
go back to reference Vitale A, Cabral JT (2016) Frontal conversion and uniformity in 3D printing by photopolymerisation. Materials 9(9):760CrossRef Vitale A, Cabral JT (2016) Frontal conversion and uniformity in 3D printing by photopolymerisation. Materials 9(9):760CrossRef
23.
go back to reference Chung DDL (2010) Functional materials. World scientific, chapter 3 Chung DDL (2010) Functional materials. World scientific, chapter 3
Metadata
Title
Piezoelectric behavior of three-dimensionally printed acrylate polymer without filler or poling
Authors
Patatri Chakraborty
Chi Zhou
D. D. L. Chung
Publication date
12-01-2018
Publisher
Springer US
Published in
Journal of Materials Science / Issue 9/2018
Print ISSN: 0022-2461
Electronic ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-018-2006-0

Other articles of this Issue 9/2018

Journal of Materials Science 9/2018 Go to the issue

Premium Partners