Skip to main content
Top
Published in: International Journal on Interactive Design and Manufacturing (IJIDeM) 1/2024

13-10-2023 | Original Paper

Piezoelectric–electromagnetic integrated vibrational hybrid energy harvester for low power applications

Authors: V. Amirtha Raj, M. Manivannan

Published in: International Journal on Interactive Design and Manufacturing (IJIDeM) | Issue 1/2024

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this paper, we proposed an electromagnetic-piezoelectric integrated vibration based energy harvester to scavenge energy and generate steady power. By adopting rectangular cut cantilever with rectangular portion comprising the PE section and remaining cut portion acts as proof mass and NdFeB magnet which is surrounded by the coil. Power is harvested simultaneously by means of electromagnetic induction and piezoelectric principle. Though it works on different mechanisms, the design and fabrication of the harvester is as simple as the device with single energy conversion process, which results in reduced size and attains a greater power density. The design of hybrid harvester was modeled and investigated by using COMSOL multi-physics which produces 120 μW at its matching frequency with an optimum load.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
2.
go back to reference Beeby, S.P., Tudor, M.J., White, N.M.: Energy harvesting vibration sources for microsystems applications. Meas. Sci. Technol. 17(12), R175 (2006)CrossRef Beeby, S.P., Tudor, M.J., White, N.M.: Energy harvesting vibration sources for microsystems applications. Meas. Sci. Technol. 17(12), R175 (2006)CrossRef
3.
go back to reference Toshiyoshi, H., Ju, S., Honma, H., Ji, C.H., Fujita, H.: MEMS vibrational energy harvesters. Sci. Technol. Adv. Mater. 20(1), 124–143 (2019)CrossRef Toshiyoshi, H., Ju, S., Honma, H., Ji, C.H., Fujita, H.: MEMS vibrational energy harvesters. Sci. Technol. Adv. Mater. 20(1), 124–143 (2019)CrossRef
5.
go back to reference Nechibvute, A., Chawanda, A., Luhanga, P.: Piezoelectric energy harvesting devices: an alternative energy source for wireless sensors. Smart Mater. Res. 2012, 1–13 (2012)CrossRef Nechibvute, A., Chawanda, A., Luhanga, P.: Piezoelectric energy harvesting devices: an alternative energy source for wireless sensors. Smart Mater. Res. 2012, 1–13 (2012)CrossRef
7.
go back to reference Qian, F., Zhou, S., Zuo, L.: Commun Nonlinear Sci Numer Simulat Approximate solutions and their stability of a broadband piezoelectric energy harvester with a tunable potential function. Commun. Nonlinear Sci. Numer. Simul. 80, 104984 (2020)MathSciNetCrossRef Qian, F., Zhou, S., Zuo, L.: Commun Nonlinear Sci Numer Simulat Approximate solutions and their stability of a broadband piezoelectric energy harvester with a tunable potential function. Commun. Nonlinear Sci. Numer. Simul. 80, 104984 (2020)MathSciNetCrossRef
14.
go back to reference Zhang, Y., Wang, T., Luo, A., Hu, Y., Li, X., Wang, F.: Micro electrostatic energy harvester with both broad bandwidth and high normalized power density. Appl. Energy 212, 362–371 (2018)CrossRef Zhang, Y., Wang, T., Luo, A., Hu, Y., Li, X., Wang, F.: Micro electrostatic energy harvester with both broad bandwidth and high normalized power density. Appl. Energy 212, 362–371 (2018)CrossRef
16.
go back to reference Mohammadi, S., Esfandiari, A.: Magnetostrictive vibration energy harvesting using strain energy method. Energy 81, 519–525 (2015)CrossRef Mohammadi, S., Esfandiari, A.: Magnetostrictive vibration energy harvesting using strain energy method. Energy 81, 519–525 (2015)CrossRef
17.
go back to reference Wang, X., Chen, X., Iwamoto, M.: Recent progress in the development of portable high voltage source based on triboelectric nanogenerator. Smart Mater. Med. 1(June), 66–76 (2020)CrossRef Wang, X., Chen, X., Iwamoto, M.: Recent progress in the development of portable high voltage source based on triboelectric nanogenerator. Smart Mater. Med. 1(June), 66–76 (2020)CrossRef
20.
go back to reference Toyabur, R.M., Kim, J.W., Park, J.Y.: A hybrid piezoelectric and electromagnetic energy harvester for scavenging low frequency ambient vibrations. J. Phys. Conf. Ser. 1052(1), 012051 (2018)CrossRef Toyabur, R.M., Kim, J.W., Park, J.Y.: A hybrid piezoelectric and electromagnetic energy harvester for scavenging low frequency ambient vibrations. J. Phys. Conf. Ser. 1052(1), 012051 (2018)CrossRef
24.
go back to reference Madinei, H., Khodaparast, H.H., Adhikari, S., Friswell, M.I.: A hybrid piezoelectric and electrostatic vibration energy harvester. In: Brandt, A., Singhal, R. (eds.) Shock & Vibration, Aircraft/Aerospace, Energy Harvesting, Acoustics & Optics, Vol. 9. Conference Proceedings of the Society for Experimental Mechanics Series. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-30087-0_17 Madinei, H., Khodaparast, H.H., Adhikari, S., Friswell, M.I.: A hybrid piezoelectric and electrostatic vibration energy harvester. In: Brandt, A., Singhal, R. (eds.) Shock & Vibration, Aircraft/Aerospace, Energy Harvesting, Acoustics & Optics, Vol. 9. Conference Proceedings of the Society for Experimental Mechanics Series. Springer, Cham (2016). https://​doi.​org/​10.​1007/​978-3-319-30087-0_​17
25.
go back to reference Ganapathy, S.R., Salleh, H., Azhar, M.K.A.: Design and optimisation of magnetically-tunable hybrid piezoelectric-triboelectric energy harvester. Sci. Rep. 11(1), 1–13 (2021)CrossRef Ganapathy, S.R., Salleh, H., Azhar, M.K.A.: Design and optimisation of magnetically-tunable hybrid piezoelectric-triboelectric energy harvester. Sci. Rep. 11(1), 1–13 (2021)CrossRef
28.
go back to reference Zhou, X., Gao, S., Liu, H., Jin, L.: Nonlinear hybrid piezoelectric and electromagnetic energy harvesting driven by colored excitation. Energies 11(3), 498 (2018)CrossRef Zhou, X., Gao, S., Liu, H., Jin, L.: Nonlinear hybrid piezoelectric and electromagnetic energy harvesting driven by colored excitation. Energies 11(3), 498 (2018)CrossRef
30.
go back to reference Wu, N., He, Y., Fu, J., Liao, P.: Study of the properties of a hybrid piezoelectric and electromagnetic energy harvester for a civil engineering low-frequency sloshing environment. Energies 14(2), 0–10 (2021)CrossRef Wu, N., He, Y., Fu, J., Liao, P.: Study of the properties of a hybrid piezoelectric and electromagnetic energy harvester for a civil engineering low-frequency sloshing environment. Energies 14(2), 0–10 (2021)CrossRef
31.
go back to reference Wischke, M., Masur, M., and Woias,P.,: A hybrid generator for vibration energy harvesting applications. no. Fig 2, pp. 521–524, (2009) Wischke, M., Masur, M., and Woias,P.,: A hybrid generator for vibration energy harvesting applications. no. Fig 2, pp. 521–524, (2009)
33.
go back to reference Karami, M.A., Inman, D.J.: Equivalent damping and frequency change for linear and nonlinear hybrid vibrational energy harvesting systems. J. Sound Vib. 330(23), 5583–5597 (2011)CrossRef Karami, M.A., Inman, D.J.: Equivalent damping and frequency change for linear and nonlinear hybrid vibrational energy harvesting systems. J. Sound Vib. 330(23), 5583–5597 (2011)CrossRef
37.
go back to reference Shan, X., Xu, Z., Song, R., Xie, T.: A new mathematical model for a piezoelectric-electromagnetic hybrid energy harvester. Ferroelectrics 450(1), 57–65 (2013)CrossRef Shan, X., Xu, Z., Song, R., Xie, T.: A new mathematical model for a piezoelectric-electromagnetic hybrid energy harvester. Ferroelectrics 450(1), 57–65 (2013)CrossRef
39.
go back to reference Tamez, J.P., Bhalla, A., Guo, R.: Design and simulation of 100 kHz and 200 kHz tri-phasic PZT piezoelectric transducers. Integr. Ferroelectr. 166(1), 99–107 (2015)CrossRef Tamez, J.P., Bhalla, A., Guo, R.: Design and simulation of 100 kHz and 200 kHz tri-phasic PZT piezoelectric transducers. Integr. Ferroelectr. 166(1), 99–107 (2015)CrossRef
40.
go back to reference Alsaad, A.M., Ahmad, A.A., Al-Bataineh, Q.M., Daoud, N.S., Khazaleh, M.H.: Design and analysis of MEMS based aluminum nitride (AlN), lithium niobate (LiNbO<sub>3</sub>) and zinc oxide (ZnO) cantilever with different substrate materials for piezoelectric vibration energy harvesters using comsol multiphysics software. Open J. Appl. Sci. 09(04), 181–197 (2019) Alsaad, A.M., Ahmad, A.A., Al-Bataineh, Q.M., Daoud, N.S., Khazaleh, M.H.: Design and analysis of MEMS based aluminum nitride (AlN), lithium niobate (LiNbO<sub>3</sub>) and zinc oxide (ZnO) cantilever with different substrate materials for piezoelectric vibration energy harvesters using comsol multiphysics software. Open J. Appl. Sci. 09(04), 181–197 (2019)
41.
go back to reference Glynne-Jones, P., Tudor, M.J., Beeby, S.P., White, N.M.: An electromagnetic, vibration-powered generator for intelligent sensor systems. Sens. Actuators, A Phys. 110(1–3), 344–349 (2004)CrossRef Glynne-Jones, P., Tudor, M.J., Beeby, S.P., White, N.M.: An electromagnetic, vibration-powered generator for intelligent sensor systems. Sens. Actuators, A Phys. 110(1–3), 344–349 (2004)CrossRef
42.
go back to reference Xu, Z., Shan, X., Chen, D., Xie, T.: A novel tunable multi-frequency hybrid vibration energy harvester using piezoelectric and electromagnetic conversion mechanisms. Appl. Sci. 6, 1 (2016)CrossRef Xu, Z., Shan, X., Chen, D., Xie, T.: A novel tunable multi-frequency hybrid vibration energy harvester using piezoelectric and electromagnetic conversion mechanisms. Appl. Sci. 6, 1 (2016)CrossRef
43.
go back to reference Xia, H., Chen, R., Ren, L.: Parameter tuning of piezoelectric–electromagnetic hybrid vibration energy harvester by magnetic force: modeling and experiment. Sens. Actuators A Phys. 257, 73–83 (2017)CrossRef Xia, H., Chen, R., Ren, L.: Parameter tuning of piezoelectric–electromagnetic hybrid vibration energy harvester by magnetic force: modeling and experiment. Sens. Actuators A Phys. 257, 73–83 (2017)CrossRef
48.
go back to reference Challa, V.R., Prasad, M.G., Fisher, F.T.: A coupled piezoelectric–electromagnetic energy harvesting technique for achieving increased power output through damping matching. Smart Mater. Struct. 18, 095029 (2009)CrossRef Challa, V.R., Prasad, M.G., Fisher, F.T.: A coupled piezoelectric–electromagnetic energy harvesting technique for achieving increased power output through damping matching. Smart Mater. Struct. 18, 095029 (2009)CrossRef
49.
go back to reference Li, X., Bi, C., Li, Z., Liu, B., Wang, T., Zhang, S.: A piezoelectric and electromagnetic hybrid galloping energy harvester with the magnet embedded in the bluff body. Micromachines 12, 6 (2021) Li, X., Bi, C., Li, Z., Liu, B., Wang, T., Zhang, S.: A piezoelectric and electromagnetic hybrid galloping energy harvester with the magnet embedded in the bluff body. Micromachines 12, 6 (2021)
50.
go back to reference Hamid, R., Yuce, M.R.: A wearable energy harvester unit using piezoelectric–electromagnetic hybrid technique. Sens. Actuators A Phys. 257, 198–207 (2017)CrossRef Hamid, R., Yuce, M.R.: A wearable energy harvester unit using piezoelectric–electromagnetic hybrid technique. Sens. Actuators A Phys. 257, 198–207 (2017)CrossRef
Metadata
Title
Piezoelectric–electromagnetic integrated vibrational hybrid energy harvester for low power applications
Authors
V. Amirtha Raj
M. Manivannan
Publication date
13-10-2023
Publisher
Springer Paris
Published in
International Journal on Interactive Design and Manufacturing (IJIDeM) / Issue 1/2024
Print ISSN: 1955-2513
Electronic ISSN: 1955-2505
DOI
https://doi.org/10.1007/s12008-023-01522-2

Other articles of this Issue 1/2024

International Journal on Interactive Design and Manufacturing (IJIDeM) 1/2024 Go to the issue

Premium Partner