Skip to main content
Top
Published in: Microsystem Technologies 9/2018

21-03-2018 | Technical Paper

Piezoelectric-thermo-elastic coupling effect analysis for piezoelectric vibration energy harvester

Authors: Ping Li, Changlong Li, Binglong Cong

Published in: Microsystem Technologies | Issue 9/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The paper investigates the influence of piezoelectric-thermo-elastic coupling on the piezoelectric material in piezoelectric energy harvester for the flexural vibration. The coupled constitutive equations which present the mechanical, thermal and electric fields correlation are derived and the field parameters of displacement, temperature and output voltage are deduced. Then the frequency shift ratio and piezoelectric-thermo-elastic damping which is influenced by the irreversible heat energy dissipation are concluded. The comparison of piezoelectric structure is made between piezoelectric-thermo-elastic coupling fields and piezoelectric-elastic fields to determine the effect of temperature on piezoelectric structure. The numerical results with the help of MATLAB software are proposed graphically for intuitional presentation of the piezoelectric-thermo-elastic coupling effect on lead zirconate titanate (PZT)-5H structure of energy harvester.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Ahmad SN, Upadhyay CS, Venkatesan C (2006) Electro-thermo-elastic formulation for the analysis of smart structures. Smart Mater Struct 15(2):401CrossRef Ahmad SN, Upadhyay CS, Venkatesan C (2006) Electro-thermo-elastic formulation for the analysis of smart structures. Smart Mater Struct 15(2):401CrossRef
go back to reference Andosca R, McDonald TG, Genova V et al (2012) Experimental and theoretical studies on MEMS piezoelectric vibrational energy harvesters with mass loading. Sens Actuators A 178:76–87CrossRef Andosca R, McDonald TG, Genova V et al (2012) Experimental and theoretical studies on MEMS piezoelectric vibrational energy harvesters with mass loading. Sens Actuators A 178:76–87CrossRef
go back to reference Chattopadhyay A, Li J, Gu H (1999) Coupled thermo-piezoelectric-mechanical model for smart composite laminates. AIAA J 37(12):1633–1638CrossRef Chattopadhyay A, Li J, Gu H (1999) Coupled thermo-piezoelectric-mechanical model for smart composite laminates. AIAA J 37(12):1633–1638CrossRef
go back to reference Curie J, Curie P (1880) Développement, par pression, de l’électricité polaire dans les cristaux hémièdres à faces inclinées. Comptes Rendus 91:294–295MATH Curie J, Curie P (1880) Développement, par pression, de l’électricité polaire dans les cristaux hémièdres à faces inclinées. Comptes Rendus 91:294–295MATH
go back to reference Dutoit NE, Wardle BL, Kim SG (2005) Design considerations for MEMS-scale piezoelectric mechanical vibration energy harvesters. Integr Ferroelectr 71(1):121–160CrossRef Dutoit NE, Wardle BL, Kim SG (2005) Design considerations for MEMS-scale piezoelectric mechanical vibration energy harvesters. Integr Ferroelectr 71(1):121–160CrossRef
go back to reference Duwel A, Candler RN, Kenny TW et al (2006) Engineering MEMS resonators with low thermoelastic damping. Microelectromech Syst J 15(6):1437–1445CrossRef Duwel A, Candler RN, Kenny TW et al (2006) Engineering MEMS resonators with low thermoelastic damping. Microelectromech Syst J 15(6):1437–1445CrossRef
go back to reference Fahsi B (2015) Study of a piezo-thermo-elastic materials console. J Mater Eng Struct. JMES 2(3):130–144 Fahsi B (2015) Study of a piezo-thermo-elastic materials console. J Mater Eng Struct. JMES 2(3):130–144
go back to reference Grover D, Sharma JN (2012) Transverse vibrations in piezothermoelastic beam resonators. J Intell Mater Syst Struct 23(1):77–84CrossRef Grover D, Sharma JN (2012) Transverse vibrations in piezothermoelastic beam resonators. J Intell Mater Syst Struct 23(1):77–84CrossRef
go back to reference Ikeda T (1996) Fundamentals of piezoelectricity. Oxford University Press, Oxford Ikeda T (1996) Fundamentals of piezoelectricity. Oxford University Press, Oxford
go back to reference Li P, Fang Y, Rufu H (2012) Thermoelastic damping in rectangular and circular microplate resonators. J Sound Vib 331(3):721–733CrossRef Li P, Fang Y, Rufu H (2012) Thermoelastic damping in rectangular and circular microplate resonators. J Sound Vib 331(3):721–733CrossRef
go back to reference Lifshitz R, Roukes ML (2000) Thermoelastic damping in micro-and nanomechanical systems. Phys Rev B 61(8):5600CrossRef Lifshitz R, Roukes ML (2000) Thermoelastic damping in micro-and nanomechanical systems. Phys Rev B 61(8):5600CrossRef
go back to reference Liu JQ, Fang HB, Xu ZY et al (2008) A MEMS-based piezoelectric power generator array for vibration energy harvesting. Microelectron J 39(5):802–806CrossRef Liu JQ, Fang HB, Xu ZY et al (2008) A MEMS-based piezoelectric power generator array for vibration energy harvesting. Microelectron J 39(5):802–806CrossRef
go back to reference Mindlin RD (1989) On the equations of motion of piezoelectric crystals. Probl Contin Mech 1:282–290 Mindlin RD (1989) On the equations of motion of piezoelectric crystals. Probl Contin Mech 1:282–290
go back to reference Nowacki W (1978) Some general theorems of thermopiezoelectricity. J Therm Stresses 1(2):171–182CrossRef Nowacki W (1978) Some general theorems of thermopiezoelectricity. J Therm Stresses 1(2):171–182CrossRef
go back to reference Sharma JN (2011) Thermoelastic damping and frequency shift in micro/nanoscale anisotropic beams. J Therm Stresses 34(7):650–666CrossRef Sharma JN (2011) Thermoelastic damping and frequency shift in micro/nanoscale anisotropic beams. J Therm Stresses 34(7):650–666CrossRef
go back to reference Vahdat AS, Rezazadeh G, Ahmadi G (2012) Thermoelastic damping in a micro-beam resonator tunable with piezoelectric layers. Acta Mech Solida Sin 25(1):73–81CrossRef Vahdat AS, Rezazadeh G, Ahmadi G (2012) Thermoelastic damping in a micro-beam resonator tunable with piezoelectric layers. Acta Mech Solida Sin 25(1):73–81CrossRef
go back to reference Vigevani G, Kuypers J, Pisano AP (2008) Modeling of thermoelastic damping in piezoelectric aluminum nitride tuning forks. Proc, Ultrason Electron Vigevani G, Kuypers J, Pisano AP (2008) Modeling of thermoelastic damping in piezoelectric aluminum nitride tuning forks. Proc, Ultrason Electron
go back to reference Yang JS, Batra RC (1995) Free vibrations of a linear thermopiezoelectric body. J Therm Stresses 18(2):247–262CrossRef Yang JS, Batra RC (1995) Free vibrations of a linear thermopiezoelectric body. J Therm Stresses 18(2):247–262CrossRef
go back to reference Younis MI (2011) MEMS linear and nonlinear statics and dynamics. Springer Science & Business Media, BerlinCrossRef Younis MI (2011) MEMS linear and nonlinear statics and dynamics. Springer Science & Business Media, BerlinCrossRef
go back to reference Zener C (1937) Internal friction in solids. I. Theory of internal friction in reeds. Phys Rev 52(3):230CrossRefMATH Zener C (1937) Internal friction in solids. I. Theory of internal friction in reeds. Phys Rev 52(3):230CrossRefMATH
go back to reference Zhou SW, Rogers CA (1995) Heat generation, temperature, and thermal stress of structurally integrated piezo-actuators. J Intell Mater Syst Struct 6(3):372–379CrossRef Zhou SW, Rogers CA (1995) Heat generation, temperature, and thermal stress of structurally integrated piezo-actuators. J Intell Mater Syst Struct 6(3):372–379CrossRef
Metadata
Title
Piezoelectric-thermo-elastic coupling effect analysis for piezoelectric vibration energy harvester
Authors
Ping Li
Changlong Li
Binglong Cong
Publication date
21-03-2018
Publisher
Springer Berlin Heidelberg
Published in
Microsystem Technologies / Issue 9/2018
Print ISSN: 0946-7076
Electronic ISSN: 1432-1858
DOI
https://doi.org/10.1007/s00542-018-3852-z

Other articles of this Issue 9/2018

Microsystem Technologies 9/2018 Go to the issue