Skip to main content
Top

2011 | OriginalPaper | Chapter

27. Plain Orifice Spray Nozzles

Author : S. D. Heister

Published in: Handbook of Atomization and Sprays

Publisher: Springer US

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Plain orifice, or “pressure atomizers” are the most commonly used atomizers due primarily to their simplicity and ease of manufacture. This chapter provides background on the characteristics of these devices in terms of spray production and general behavior. Classical linear theories are reviewed to provide a basis for theoretical droplet size predictions. More recent developments assessing the unsteadiness within these devices, and its role in spray production, is also provided in subsequent discussion. The chapter closes with modern nonlinear simulations of spray production using modern numerical techniques.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference A. Lefebvre, Atomization and Sprays, Hemisphere Publishing, New York, 1989. A. Lefebvre, Atomization and Sprays, Hemisphere Publishing, New York, 1989.
2.
go back to reference A. Lichtarowicz, R. K. Duggins, and E. Markland, Discharge coefficients for incompressible non-cavitating flow through long orifices, Journal of mechanical Engineering Science, 7(2), 210–219, 1965.CrossRef A. Lichtarowicz, R. K. Duggins, and E. Markland, Discharge coefficients for incompressible non-cavitating flow through long orifices, Journal of mechanical Engineering Science, 7(2), 210–219, 1965.CrossRef
3.
go back to reference T. R. Ohrn, Senser, D. W., and Lefebvre, A. H., Geometrical effects on discharge coefficients for plain orifice atomizers, Atomization and Sprays, 1(2), 137–157, 1991. T. R. Ohrn, Senser, D. W., and Lefebvre, A. H., Geometrical effects on discharge coefficients for plain orifice atomizers, Atomization and Sprays, 1(2), 137–157, 1991.
4.
go back to reference V.I. Asihmin, Geller, Z. I., and Skobel’cyn, Yu. A., Discharge of a real fluid from cylindrical orifices (in Russian), Oil Industry, Vol. 9, Moscow, 1961. V.I. Asihmin, Geller, Z. I., and Skobel’cyn, Yu. A., Discharge of a real fluid from cylindrical orifices (in Russian), Oil Industry, Vol. 9, Moscow, 1961.
5.
go back to reference W. S. Rayleigh, On the instability of jets, Proc. Lond. Math. Soc., 10(4), 1878. W. S. Rayleigh, On the instability of jets, Proc. Lond. Math. Soc., 10(4), 1878.
6.
go back to reference C. Weber, Zum Zerfall Eines Flussigkeitsstrahles, Z. Angew. Math. Mech., 11, 138–245, 1931. C. Weber, Zum Zerfall Eines Flussigkeitsstrahles, Z. Angew. Math. Mech., 11, 138–245, 1931.
7.
go back to reference N. N. Mansour and T. T. Lundgren, Satellite formation in capillary jet breakup, Phys. Fluids, 2, 1141–1144, 1990.CrossRef N. N. Mansour and T. T. Lundgren, Satellite formation in capillary jet breakup, Phys. Fluids, 2, 1141–1144, 1990.CrossRef
8.
go back to reference J. H. Hilbing, S. D. Heister, and C. A. Spangler, A boundary element method for atomization of a finite liquid jet, Atomization Sprays, 5(6), 621–638, 1995. J. H. Hilbing, S. D. Heister, and C. A. Spangler, A boundary element method for atomization of a finite liquid jet, Atomization Sprays, 5(6), 621–638, 1995.
9.
go back to reference C. A. Spangler, J. H. Hilbing, and S. D. Heister, Nonlinear modeling of jet atomization in the wind-induced regime, Phys. Fluids, 7, 964, 1995.MATHCrossRef C. A. Spangler, J. H. Hilbing, and S. D. Heister, Nonlinear modeling of jet atomization in the wind-induced regime, Phys. Fluids, 7, 964, 1995.MATHCrossRef
10.
go back to reference M. P. Moses, Collicott, S. H., and Heister, S. D., Visualization of liquid jet breakup and drop formation, Atomization Sprays, 9(4), 331–342, 1999. M. P. Moses, Collicott, S. H., and Heister, S. D., Visualization of liquid jet breakup and drop formation, Atomization Sprays, 9(4), 331–342, 1999.
11.
go back to reference J. H. Hilbing and Heister, S. D., Droplet size control in liquid jet breakup, Phys. Fluids, 8(6), 1574–1581, 1996.MATHCrossRef J. H. Hilbing and Heister, S. D., Droplet size control in liquid jet breakup, Phys. Fluids, 8(6), 1574–1581, 1996.MATHCrossRef
12.
go back to reference V. G. Levich, Physicochemical Hydrodynamics, Prentice Hall, New Jersey, pp. 639–646, 1962. V. G. Levich, Physicochemical Hydrodynamics, Prentice Hall, New Jersey, pp. 639–646, 1962.
13.
go back to reference A. M. Sterling and C. A. Sleicher, The instability of capillary jets, J. Fluid Mech., 68(3), 477–495, 1975.MATHCrossRef A. M. Sterling and C. A. Sleicher, The instability of capillary jets, J. Fluid Mech., 68(3), 477–495, 1975.MATHCrossRef
14.
go back to reference R. D. Reitz and F. V. Bracco, Mechanism of atomization of a liquid jet, Phys. Fluids, 25(10), 1730–1742, 1982.MATHCrossRef R. D. Reitz and F. V. Bracco, Mechanism of atomization of a liquid jet, Phys. Fluids, 25(10), 1730–1742, 1982.MATHCrossRef
15.
go back to reference S. P. Lin, Two types of linear theories for atomizing liquids, Atomization Sprays, 16, 147–158, 2006.CrossRef S. P. Lin, Two types of linear theories for atomizing liquids, Atomization Sprays, 16, 147–158, 2006.CrossRef
16.
go back to reference S. P. Lin and Z.W. Wang, Three types of linear theories for atomizing liquids, Atomization Sprays, 18, 273–286, 2007. S. P. Lin and Z.W. Wang, Three types of linear theories for atomizing liquids, Atomization Sprays, 18, 273–286, 2007.
17.
go back to reference J. W. Hoyt and J. J. Taylor, Waves on water jets, J. Fluid Mech., 83, 119–127, 1977.CrossRef J. W. Hoyt and J. J. Taylor, Waves on water jets, J. Fluid Mech., 83, 119–127, 1977.CrossRef
18.
go back to reference J. W. Hoyt and J. J. Taylor, Turbulence structure in a water jet discharging in the air, Phys. Fluids, 20(10), s253–s257, 1977.CrossRef J. W. Hoyt and J. J. Taylor, Turbulence structure in a water jet discharging in the air, Phys. Fluids, 20(10), s253–s257, 1977.CrossRef
19.
go back to reference J. W. Hoyt and J. J. Taylor, Effect of nozzle boundary layer on water jets discharging in the air, Jets Cavities-Int. Symp., pp. 93–100, 1985. J. W. Hoyt and J. J. Taylor, Effect of nozzle boundary layer on water jets discharging in the air, Jets Cavities-Int. Symp., pp. 93–100, 1985.
20.
go back to reference M. J. McCarthy and N. A. Molloy, Review of stability of liquid jets and the influence of nozzle design, Chem. Eng. J., 7, 1–20, 1974. M. J. McCarthy and N. A. Molloy, Review of stability of liquid jets and the influence of nozzle design, Chem. Eng. J., 7, 1–20, 1974.
21.
go back to reference V. Y. Shkadov, Wave formation on surface of viscous liquid due to tangential stress, Fluid Dyn., 5, 473–476, 1970.CrossRef V. Y. Shkadov, Wave formation on surface of viscous liquid due to tangential stress, Fluid Dyn., 5, 473–476, 1970.CrossRef
22.
go back to reference C. Brennen, Cavity surface wave patterns and general appearance, J. Fluid Mech., 44(1), 33–49, 1970.CrossRef C. Brennen, Cavity surface wave patterns and general appearance, J. Fluid Mech., 44(1), 33–49, 1970.CrossRef
23.
go back to reference H. Park and S. D. Heister, A numerical study of primary instability on viscous high-speed jets, Comput. Fluids, 35, 1033–1045, 2006.MATHCrossRef H. Park and S. D. Heister, A numerical study of primary instability on viscous high-speed jets, Comput. Fluids, 35, 1033–1045, 2006.MATHCrossRef
24.
go back to reference G. A. Blaisdell, Collicott, S. H., and Portillo J. E., Measurements of instability waves in a high-speed liquid jet, 61st Conference of the American Physical Society, Division of Fluid Dynamics, San Antonio TX, 2008. G. A. Blaisdell, Collicott, S. H., and Portillo J. E., Measurements of instability waves in a high-speed liquid jet, 61st Conference of the American Physical Society, Division of Fluid Dynamics, San Antonio TX, 2008.
25.
go back to reference S. S. Yoon and S. D. Heister, Categorizing linear theories for atomizing jets, Atomization Sprays, 13, 499–516, 2003.CrossRef S. S. Yoon and S. D. Heister, Categorizing linear theories for atomizing jets, Atomization Sprays, 13, 499–516, 2003.CrossRef
26.
go back to reference J. H. Hilbing and S. D. Heister, Nonlinear simulation of a high-speed, viscous, liquid jet, Atomization Sprays, 8, 155–178, 1997. J. H. Hilbing and S. D. Heister, Nonlinear simulation of a high-speed, viscous, liquid jet, Atomization Sprays, 8, 155–178, 1997.
27.
go back to reference S. S. Yoon, and S. D. Heister, A nonlinear atomization model based on a boundary layer instability mechanism, Phys. Fluids, 16(1), 47–61, 2004.MathSciNetCrossRef S. S. Yoon, and S. D. Heister, A nonlinear atomization model based on a boundary layer instability mechanism, Phys. Fluids, 16(1), 47–61, 2004.MathSciNetCrossRef
28.
go back to reference P. K. Wu and G. M. Faeth. Aerodynamic effects on primary breakup of turbulent liquids, Atomization Sprays, 3, 265–289, 1993. P. K. Wu and G. M. Faeth. Aerodynamic effects on primary breakup of turbulent liquids, Atomization Sprays, 3, 265–289, 1993.
29.
go back to reference P. K. Wu, L. K. Tseng, and G. M. Faeth. Primary breakup in gas/liquid mixing layers for turbulent liquids. Atomization Sprays, 2, 295–317, 1992. P. K. Wu, L. K. Tseng, and G. M. Faeth. Primary breakup in gas/liquid mixing layers for turbulent liquids. Atomization Sprays, 2, 295–317, 1992.
30.
31.
go back to reference C. Xu, R. A. Bunnell, and S. D. Heister, On the influence of internal flow structure on performance of plain-orifice atomizers, Atomization Sprays, 11, 335–350, 2001.MATH C. Xu, R. A. Bunnell, and S. D. Heister, On the influence of internal flow structure on performance of plain-orifice atomizers, Atomization Sprays, 11, 335–350, 2001.MATH
32.
go back to reference M. MacDonald, J. Canino, and S. Heister, Nonlinear response functions for drilled orifice injectors, 42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, 2006. AIAA-2006-4706. M. MacDonald, J. Canino, and S. Heister, Nonlinear response functions for drilled orifice injectors, 42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, 2006. AIAA-2006-4706.
33.
go back to reference J. Canino and Heister, S. D., Contributions of orifice hydrodynamic instabilities to primary atomization, Atomization Sprays, V19, 91–102, 2009.CrossRef J. Canino and Heister, S. D., Contributions of orifice hydrodynamic instabilities to primary atomization, Atomization Sprays, V19, 91–102, 2009.CrossRef
35.
go back to reference J. Tsohas, J. Canino, and S. Heister, Computational modeling of rocket internal flows, 43nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, 2007. AIAA-2007-5571. J. Tsohas, J. Canino, and S. Heister, Computational modeling of rocket internal flows, 43nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, 2007. AIAA-2007-5571.
Metadata
Title
Plain Orifice Spray Nozzles
Author
S. D. Heister
Copyright Year
2011
Publisher
Springer US
DOI
https://doi.org/10.1007/978-1-4419-7264-4_27

Premium Partners