Skip to main content
Top
Published in: Journal of Materials Science 5/2015

01-03-2015 | Original Paper

Plastic yielding contribution to fracture toughness of polymers modified with rubber and inorganic fillers

Author: Bernd Lauke

Published in: Journal of Materials Science | Issue 5/2015

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

High-multiaxial stresses are created in front of a crack which leads to various fracture processes in a region close to the crack tip. These processes contribute to the energy dissipation of the moving crack increasing the crack resistance of the material. One of these processes is matrix yielding around particles which may happen before debonding of the particles and the calculation of that mechanism is the subject of this paper. At first, the mechanical problem of a spherical particle within a spherical elastic–plastic rubber filled matrix under hydrostatic tensile stress was solved. With the knowledge of the stresses and displacements of such a composite element, the yielding energy around one particle was calculated. Finally, an analytical equation for the composite fracture toughness for this mechanism was obtained by integration of the yielding energy density over the normalized hydrostatic stress within the yielding zone, which provides an increase with increasing particle fraction towards a maximum.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Moloney AC, Kausch HH, Kaiser T, Beer HR (1987) Review. Parameters determining the strength and toughness of particulate filled epoxy resins. J Mater Sci 22:381–393. doi:10.1007/BF01160743 CrossRef Moloney AC, Kausch HH, Kaiser T, Beer HR (1987) Review. Parameters determining the strength and toughness of particulate filled epoxy resins. J Mater Sci 22:381–393. doi:10.​1007/​BF01160743 CrossRef
2.
go back to reference Fu SY, Feng XQ, Lauke B, Mai YW (2008) Effects of particle size, particle-matrix interface adhesion and particle loading on mechanical properties of particulate polymer composites. Compos Part B 39:933–961CrossRef Fu SY, Feng XQ, Lauke B, Mai YW (2008) Effects of particle size, particle-matrix interface adhesion and particle loading on mechanical properties of particulate polymer composites. Compos Part B 39:933–961CrossRef
3.
go back to reference Garg AC, Mai YW (1988) Failure mechanisms in toughened epoxy resins—a review. Compos Sci Technol 31:179–223CrossRef Garg AC, Mai YW (1988) Failure mechanisms in toughened epoxy resins—a review. Compos Sci Technol 31:179–223CrossRef
4.
go back to reference Kinloch AJ, Maxwell D, Young RJ (1985) Micromechanisms of crack propagation in hybrid-particulate composites. J Mater Sci 4:1276–1279. doi:10.1007/BF00723480 Kinloch AJ, Maxwell D, Young RJ (1985) Micromechanisms of crack propagation in hybrid-particulate composites. J Mater Sci 4:1276–1279. doi:10.​1007/​BF00723480
5.
go back to reference Huang Y, Kinloch AJ (1992) The role of plastic void growth in the fracture of rubber-toughened epoxy polymers. J Mater Sci Lett 11:484–487CrossRef Huang Y, Kinloch AJ (1992) The role of plastic void growth in the fracture of rubber-toughened epoxy polymers. J Mater Sci Lett 11:484–487CrossRef
6.
go back to reference Huang Y, Kinloch AJ (1992) Modelling of the toughening mechanisms in rubber-modified epoxy polymer. Part 1 finite element analysis studies. J Mater Sci 27:2753–2762. doi:10.1007/BF00540702 CrossRef Huang Y, Kinloch AJ (1992) Modelling of the toughening mechanisms in rubber-modified epoxy polymer. Part 1 finite element analysis studies. J Mater Sci 27:2753–2762. doi:10.​1007/​BF00540702 CrossRef
7.
go back to reference Huang Y, Kinloch AJ (1992) Modelling of the toughening mechanisms in rubber-modified epoxy polymer. Part 2: a quantitative description of the microstructure-fracture property relationship. J Mater Sci 27:2763–2769. doi:10.1007/BF00540703 CrossRef Huang Y, Kinloch AJ (1992) Modelling of the toughening mechanisms in rubber-modified epoxy polymer. Part 2: a quantitative description of the microstructure-fracture property relationship. J Mater Sci 27:2763–2769. doi:10.​1007/​BF00540703 CrossRef
8.
go back to reference Socarte S, Boyce MC (2000) Micromechanisms of toughened polycarbonate. J Mech Phys Solids 48:233–273CrossRef Socarte S, Boyce MC (2000) Micromechanisms of toughened polycarbonate. J Mech Phys Solids 48:233–273CrossRef
10.
go back to reference Kinloch AJ, Mohammed RD, Taylor AC, Eger C, Sprenger S, Egan D (2005) The effect of silica nano particles and rubber particles on the toughness of multiphase thermosetting epoxy polymers. J Mater Sci 40:5083–5086. doi:10.1007/s10853-005-1716-2 CrossRef Kinloch AJ, Mohammed RD, Taylor AC, Eger C, Sprenger S, Egan D (2005) The effect of silica nano particles and rubber particles on the toughness of multiphase thermosetting epoxy polymers. J Mater Sci 40:5083–5086. doi:10.​1007/​s10853-005-1716-2 CrossRef
11.
go back to reference Hsieh TH, Kinloch AJ, Masani K, Sohn Lee J, Taylor AC, Sprenger S (2010) The toughness of epoxy polymers and fibre composites modified with rubber microparticles and silica nanoparticles. J Mater Sci 45:1193–1210. doi:10.1007/s10853-009-4064-9 CrossRef Hsieh TH, Kinloch AJ, Masani K, Sohn Lee J, Taylor AC, Sprenger S (2010) The toughness of epoxy polymers and fibre composites modified with rubber microparticles and silica nanoparticles. J Mater Sci 45:1193–1210. doi:10.​1007/​s10853-009-4064-9 CrossRef
12.
go back to reference Johnson BB, Kinloch AJ, Mohammed RD, Taylor AC, Sprenger S (2007) Toughening mechanisms of nanoparticle-modified epoxy polymers. Polymer 48:530–541CrossRef Johnson BB, Kinloch AJ, Mohammed RD, Taylor AC, Sprenger S (2007) Toughening mechanisms of nanoparticle-modified epoxy polymers. Polymer 48:530–541CrossRef
13.
go back to reference Dittanet P, Pearson RA (2012) Effect of silica nanoparticle size on toughening mechanisms of filled epoxy. Polymer 53:1890–1905CrossRef Dittanet P, Pearson RA (2012) Effect of silica nanoparticle size on toughening mechanisms of filled epoxy. Polymer 53:1890–1905CrossRef
14.
go back to reference Ma J, Mo MS, Du XS, Rosso P, Friedrich K, Kuan HC (2008) Effect of inorganic nanoparticles on mechanical property, fracture toughness and toughening mechanism of two epoxy systems. Polymer 49:3510–3523CrossRef Ma J, Mo MS, Du XS, Rosso P, Friedrich K, Kuan HC (2008) Effect of inorganic nanoparticles on mechanical property, fracture toughness and toughening mechanism of two epoxy systems. Polymer 49:3510–3523CrossRef
15.
go back to reference Chen JK, Wang GT, Yu ZZ, Huang ZP, Mai YW (2010) Critical particle size for interfacial debonding in polymer/nanoparticle composites. Compos Sci Technol 70:861–872CrossRef Chen JK, Wang GT, Yu ZZ, Huang ZP, Mai YW (2010) Critical particle size for interfacial debonding in polymer/nanoparticle composites. Compos Sci Technol 70:861–872CrossRef
16.
go back to reference Zappalorto M, Salviato M, Quaresimin M (2011) Influence of the interphase zone on the nanoparticle debonding stress. Compos Sci Technol 72:49–55CrossRef Zappalorto M, Salviato M, Quaresimin M (2011) Influence of the interphase zone on the nanoparticle debonding stress. Compos Sci Technol 72:49–55CrossRef
17.
go back to reference Williams G (2010) Particle toughening of polymers by plastic void growth. Compos Sci Technol 7:885–891CrossRef Williams G (2010) Particle toughening of polymers by plastic void growth. Compos Sci Technol 7:885–891CrossRef
18.
go back to reference Lauke B (2013) Effect of particle size distribution on debonding energy and crack resistance of polymer composites. Compos Sci Technol 77:53–60 Lauke B (2013) Effect of particle size distribution on debonding energy and crack resistance of polymer composites. Compos Sci Technol 77:53–60
19.
go back to reference Tang LC, Zhang H, Spenger S, Ye Lin, Zhang Z (2012) Fracture mechanisms of epoxy-based composites filled with rigid-soft particles. Compos Sci Technol 72:558–565CrossRef Tang LC, Zhang H, Spenger S, Ye Lin, Zhang Z (2012) Fracture mechanisms of epoxy-based composites filled with rigid-soft particles. Compos Sci Technol 72:558–565CrossRef
20.
go back to reference Liu HY, Wang GT, Mai YW, Zeng Y (2011) On fracture toughness of nano-particle modified epoxy. Compos B 42:2170–2175CrossRef Liu HY, Wang GT, Mai YW, Zeng Y (2011) On fracture toughness of nano-particle modified epoxy. Compos B 42:2170–2175CrossRef
21.
go back to reference Zappalorto M, Salviato M, Quaresimin MA (2012) A multiscale model to describe nanocomposite fracture toughness enhancement by the plastic yielding of nanovoids. Compos Sci Technol 72:1683–1691CrossRef Zappalorto M, Salviato M, Quaresimin MA (2012) A multiscale model to describe nanocomposite fracture toughness enhancement by the plastic yielding of nanovoids. Compos Sci Technol 72:1683–1691CrossRef
22.
go back to reference Lauke B (2013) Contribution of matrix yielding energy to the crack resistance of particle reinforced composites. Compos Sci Technol 86:135–141CrossRef Lauke B (2013) Contribution of matrix yielding energy to the crack resistance of particle reinforced composites. Compos Sci Technol 86:135–141CrossRef
23.
go back to reference Broek D (1986) Elementary engineering fracture mechanics. Martinus Nijhoff Publishers, DordrechtCrossRef Broek D (1986) Elementary engineering fracture mechanics. Martinus Nijhoff Publishers, DordrechtCrossRef
24.
go back to reference Langhaar HL (1962) Energy methods in applied mechanics. John Wiley and Sons Inc, New York Langhaar HL (1962) Energy methods in applied mechanics. John Wiley and Sons Inc, New York
25.
go back to reference Chakrabarty J (1987) Theory of plasticity. McGraw-Hill International Edition, New York Chakrabarty J (1987) Theory of plasticity. McGraw-Hill International Edition, New York
Metadata
Title
Plastic yielding contribution to fracture toughness of polymers modified with rubber and inorganic fillers
Author
Bernd Lauke
Publication date
01-03-2015
Publisher
Springer US
Published in
Journal of Materials Science / Issue 5/2015
Print ISSN: 0022-2461
Electronic ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-014-8781-3

Other articles of this Issue 5/2015

Journal of Materials Science 5/2015 Go to the issue

Premium Partners