Skip to main content
Top
Published in: Journal of Materials Science 5/2015

01-03-2015 | Original Paper

Fabrication and characterization of poly(octanediol citrate)/gallium-containing bioglass microcomposite scaffolds

Authors: Ehsan Zeimaran, Sara Pourshahrestani, Belinda Pingguan-Murphy, Nahrizul Adib Kadri, Hussin A. Rothan, Rohana Yusof, Mark R. Towler, Ivan Djordjevic

Published in: Journal of Materials Science | Issue 5/2015

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Bone can be affected by osteosarcomae requiring surgical excision of the tumor as part of the treatment regime. Complete removal of cancerous cells is difficult and conventionally requires the removal of a margin of safety around the tumor to offer improved patient prognosis. This work considers a novel series of composite scaffolds based on poly(octanediol citrate) (POC) impregnated with gallium-based bioglass microparticles for possible incorporation into bone following tumor removal. The objective of this research was to fabricate and characterize these scaffolds and subsequently report on their mechanical and biological properties. The porous microcomposite scaffolds with various concentrations of bioglass (10, 20, 30 wt%) incorporated were fabricated using a salt leaching technique. The scaffolds exhibited compression modulus in the range of 0.3–7 MPa. The addition of bioglass increased the mechanical properties even though porosity increased. Furthermore, increasing the concentration of bioglass had a significant influence on glass transition temperature from 2.5 °C for the pure polymer to around 25 °C for 30 % bioglass-containing composite. The ion release study revealed that composites containing 10 % bioglass had the highest ion release ratio after 28 days of soaking in phosphate buffered saline. The interaction of bioglass phase with POC led to the formation of additional ionic crosslinks aside from covalent crosslinks which further resulted in increased stiffness and decreased weight loss. The osteoblast cells were well attached and growth on composites and collagen synthesis increased particularly with the 10 % bioglass concentration.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Zhou D et al (2006) Repair of segmental defects with nano-hydroxyapatite/collagen/PLA composite combined with mesenchymal stem cells. J Bioact Compat Polym 21(5):373–384CrossRef Zhou D et al (2006) Repair of segmental defects with nano-hydroxyapatite/collagen/PLA composite combined with mesenchymal stem cells. J Bioact Compat Polym 21(5):373–384CrossRef
2.
go back to reference Kneser U et al (2006) Tissue engineering of bone: the reconstructive surgeon’s point of view. J Cell Mol Med 10(1):7–19CrossRef Kneser U et al (2006) Tissue engineering of bone: the reconstructive surgeon’s point of view. J Cell Mol Med 10(1):7–19CrossRef
3.
go back to reference Wu X (2012) Surface modification of polylactic acid nonwoven webs. North Carolina State University Wu X (2012) Surface modification of polylactic acid nonwoven webs. North Carolina State University
4.
go back to reference Puppi D et al (2010) Polymeric materials for bone and cartilage repair. Prog Polym Sci 35(4):403–440CrossRef Puppi D et al (2010) Polymeric materials for bone and cartilage repair. Prog Polym Sci 35(4):403–440CrossRef
5.
go back to reference Akmaz I et al (2004) Biodegradable implants in the treatment of scaphoid nonunions. Int Orthop 28(5):261–266CrossRef Akmaz I et al (2004) Biodegradable implants in the treatment of scaphoid nonunions. Int Orthop 28(5):261–266CrossRef
6.
go back to reference Alvarez K, Nakajima H (2009) Metallic scaffolds for bone regeneration. Materials 2(3):790–832CrossRef Alvarez K, Nakajima H (2009) Metallic scaffolds for bone regeneration. Materials 2(3):790–832CrossRef
7.
go back to reference Hench LL et al (1971) Bonding mechanisms at the interface of ceramic prosthetic materials. J Biomed Mater Res 5(6):117–141CrossRef Hench LL et al (1971) Bonding mechanisms at the interface of ceramic prosthetic materials. J Biomed Mater Res 5(6):117–141CrossRef
8.
go back to reference Rezwan K et al (2006) Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials 27(18):3413–3431CrossRef Rezwan K et al (2006) Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials 27(18):3413–3431CrossRef
9.
go back to reference Gerhardt L-C, Boccaccini AR (2010) Bioactive glass and glass-ceramic scaffolds for bone tissue engineering. Materials 3(7):3867–3910CrossRef Gerhardt L-C, Boccaccini AR (2010) Bioactive glass and glass-ceramic scaffolds for bone tissue engineering. Materials 3(7):3867–3910CrossRef
10.
11.
go back to reference Boccaccini AR et al (2010) Polymer/bioactive glass nanocomposites for biomedical applications: a review. Compos Sci Technol 70(13):1764–1776CrossRef Boccaccini AR et al (2010) Polymer/bioactive glass nanocomposites for biomedical applications: a review. Compos Sci Technol 70(13):1764–1776CrossRef
12.
go back to reference Chitambar CR (2010) Medical applications and toxicities of gallium compounds. Int J Environ Res Public Health 7(5):2337–2361CrossRef Chitambar CR (2010) Medical applications and toxicities of gallium compounds. Int J Environ Res Public Health 7(5):2337–2361CrossRef
14.
go back to reference Verron E et al (2010) Gallium modulates osteoclastic bone resorption in vitro without affecting osteoblasts. Br J Pharmacol 159(8):1681–1692CrossRef Verron E et al (2010) Gallium modulates osteoclastic bone resorption in vitro without affecting osteoblasts. Br J Pharmacol 159(8):1681–1692CrossRef
15.
go back to reference Wren A et al (2012) Gallium containing glass polyalkenoate anti-cancerous bone cements: glass characterization and physical properties. J Mater Sci Mater Med 23(8):1823–1833CrossRef Wren A et al (2012) Gallium containing glass polyalkenoate anti-cancerous bone cements: glass characterization and physical properties. J Mater Sci Mater Med 23(8):1823–1833CrossRef
16.
go back to reference Serrano MC, Chung EJ, Ameer G (2010) Advances and applications of biodegradable elastomers in regenerative medicine. Adv Funct Mater 20(2):192–208CrossRef Serrano MC, Chung EJ, Ameer G (2010) Advances and applications of biodegradable elastomers in regenerative medicine. Adv Funct Mater 20(2):192–208CrossRef
17.
go back to reference Li Y, Thouas GA, Chen Q-Z (2012) Biodegradable soft elastomers: synthesis/properties of materials and fabrication of scaffolds. RSC Adv 2(22):8229–8242CrossRef Li Y, Thouas GA, Chen Q-Z (2012) Biodegradable soft elastomers: synthesis/properties of materials and fabrication of scaffolds. RSC Adv 2(22):8229–8242CrossRef
18.
go back to reference Yang J, Webb AR, Ameer GA (2004) Novel citric acid-based biodegradable elastomers for tissue engineering. Adv Mater 16(6):511–516CrossRef Yang J, Webb AR, Ameer GA (2004) Novel citric acid-based biodegradable elastomers for tissue engineering. Adv Mater 16(6):511–516CrossRef
19.
go back to reference Moradi A et al (2013) Fabrication and characterization of elastomeric scaffolds comprised of a citric acid-based polyester/hydroxyapatite microcomposite. Mater Des 50:446–450CrossRef Moradi A et al (2013) Fabrication and characterization of elastomeric scaffolds comprised of a citric acid-based polyester/hydroxyapatite microcomposite. Mater Des 50:446–450CrossRef
20.
go back to reference Qiu H et al (2006) A citric acid-based hydroxyapatite composite for orthopedic implants. Biomaterials 27(34):5845–5854CrossRef Qiu H et al (2006) A citric acid-based hydroxyapatite composite for orthopedic implants. Biomaterials 27(34):5845–5854CrossRef
21.
go back to reference Djordjevic I et al (2009) Synthesis and characterization of novel citric acid-based polyester elastomers. Polymer 50(7):1682–1691CrossRef Djordjevic I et al (2009) Synthesis and characterization of novel citric acid-based polyester elastomers. Polymer 50(7):1682–1691CrossRef
22.
go back to reference Yang J et al (2006) Synthesis and evaluation of poly (diol citrate) biodegradable elastomers. Biomaterials 27(9):1889–1898CrossRef Yang J et al (2006) Synthesis and evaluation of poly (diol citrate) biodegradable elastomers. Biomaterials 27(9):1889–1898CrossRef
23.
go back to reference Ródenas-Rochina J, Ribelles JLG, Lebourg M (2013) Comparative study of PCL-HAp and PCL-bioglass composite scaffolds for bone tissue engineering. J Mater Sci Mater Med 24(5):1293–1308CrossRef Ródenas-Rochina J, Ribelles JLG, Lebourg M (2013) Comparative study of PCL-HAp and PCL-bioglass composite scaffolds for bone tissue engineering. J Mater Sci Mater Med 24(5):1293–1308CrossRef
24.
go back to reference Hahn A et al (2011) Metal ion release kinetics from nanoparticle silicone composites. J Controlled Release 154(2):164–170CrossRef Hahn A et al (2011) Metal ion release kinetics from nanoparticle silicone composites. J Controlled Release 154(2):164–170CrossRef
25.
go back to reference Zeimaran E et al (2013) Synthesis and characterization of polyacids from palm acid oil and sunflower oil via addition reaction. Bioorg Med Chem Lett 23(24):6616–6619CrossRef Zeimaran E et al (2013) Synthesis and characterization of polyacids from palm acid oil and sunflower oil via addition reaction. Bioorg Med Chem Lett 23(24):6616–6619CrossRef
26.
go back to reference Liang S-L et al (2010) The mechanical characteristics and in vitro biocompatibility of poly (glycerol sebacate)-Bioglass® elastomeric composites. Biomaterials 31(33):8516–8529CrossRef Liang S-L et al (2010) The mechanical characteristics and in vitro biocompatibility of poly (glycerol sebacate)-Bioglass® elastomeric composites. Biomaterials 31(33):8516–8529CrossRef
27.
go back to reference Cannillo V et al (2010) Production of Bioglass® 45S5–Polycaprolactone composite scaffolds via salt-leaching. Compos Struct 92(8):1823–1832CrossRef Cannillo V et al (2010) Production of Bioglass® 45S5–Polycaprolactone composite scaffolds via salt-leaching. Compos Struct 92(8):1823–1832CrossRef
28.
go back to reference Liang S, Cook WD, Chen Q (2012) Physical characterization of poly (glycerol sebacate)/Bioglass® composites. Polym Int 61(1):17–22CrossRef Liang S, Cook WD, Chen Q (2012) Physical characterization of poly (glycerol sebacate)/Bioglass® composites. Polym Int 61(1):17–22CrossRef
29.
go back to reference Misra SK et al (2007) Fabrication and characterization of biodegradable poly (3-hydroxybutyrate) composite containing bioglass. Biomacromolecules 8(7):2112–2119CrossRef Misra SK et al (2007) Fabrication and characterization of biodegradable poly (3-hydroxybutyrate) composite containing bioglass. Biomacromolecules 8(7):2112–2119CrossRef
30.
go back to reference Srinivasan S et al (2012) Biocompatible alginate/nano bioactive glass ceramic composite scaffolds for periodontal tissue regeneration. Carbohydr Polym 87(1):274–283CrossRef Srinivasan S et al (2012) Biocompatible alginate/nano bioactive glass ceramic composite scaffolds for periodontal tissue regeneration. Carbohydr Polym 87(1):274–283CrossRef
31.
go back to reference Bose S, Roy M, Bandyopadhyay A (2012) Recent advances in bone tissue engineering scaffolds. Trends Biotechnol 30(10):546–554CrossRef Bose S, Roy M, Bandyopadhyay A (2012) Recent advances in bone tissue engineering scaffolds. Trends Biotechnol 30(10):546–554CrossRef
33.
go back to reference Gerhardt L-C et al (2011) The pro-angiogenic properties of multi-functional bioactive glass composite scaffolds. Biomaterials 32(17):4096–4108CrossRef Gerhardt L-C et al (2011) The pro-angiogenic properties of multi-functional bioactive glass composite scaffolds. Biomaterials 32(17):4096–4108CrossRef
34.
go back to reference Ryszkowska JL et al (2010) Biodegradable polyurethane composite scaffolds containing Bioglass® for bone tissue engineering. Compos Sci Technol 70(13):1894–1908CrossRef Ryszkowska JL et al (2010) Biodegradable polyurethane composite scaffolds containing Bioglass® for bone tissue engineering. Compos Sci Technol 70(13):1894–1908CrossRef
35.
go back to reference Misra SK et al (2008) Comparison of nanoscale and microscale bioactive glass on the properties of P (3HB)/Bioglass® composites. Biomaterials 29(12):1750–1761CrossRef Misra SK et al (2008) Comparison of nanoscale and microscale bioactive glass on the properties of P (3HB)/Bioglass® composites. Biomaterials 29(12):1750–1761CrossRef
36.
go back to reference Fu S-Y et al (2008) Effects of particle size, particle/matrix interface adhesion and particle loading on mechanical properties of particulate-polymer composites. Compos B Eng 39(6):933–961CrossRef Fu S-Y et al (2008) Effects of particle size, particle/matrix interface adhesion and particle loading on mechanical properties of particulate-polymer composites. Compos B Eng 39(6):933–961CrossRef
37.
go back to reference Aina V et al (2011) Ga-modified (Si–Ca–P) Sol–Gel glasses: possible relationships between surface chemical properties and bioactivity. J Phys Chem C 115(45):22461–22474CrossRef Aina V et al (2011) Ga-modified (Si–Ca–P) Sol–Gel glasses: possible relationships between surface chemical properties and bioactivity. J Phys Chem C 115(45):22461–22474CrossRef
38.
go back to reference Liang S-L et al (2011) In vitro enzymatic degradation of poly (glycerol sebacate)-based materials. Biomaterials 32(33):8486–8496CrossRef Liang S-L et al (2011) In vitro enzymatic degradation of poly (glycerol sebacate)-based materials. Biomaterials 32(33):8486–8496CrossRef
39.
go back to reference Caridade SG et al (2012) Bioactivity and viscoelastic characterization of chitosan/bioglass® composite membranes. Macromol Biosci 12(8):1106–1113CrossRef Caridade SG et al (2012) Bioactivity and viscoelastic characterization of chitosan/bioglass® composite membranes. Macromol Biosci 12(8):1106–1113CrossRef
40.
go back to reference Alhalawani AM et al (2013) A novel glass polyalkenoate cement for fixation and stabilisation of the ribcage, post sternotomy surgery: an ex-vivo study. J Funct Biomater 4(4):329–357CrossRef Alhalawani AM et al (2013) A novel glass polyalkenoate cement for fixation and stabilisation of the ribcage, post sternotomy surgery: an ex-vivo study. J Funct Biomater 4(4):329–357CrossRef
41.
go back to reference Peng HT, Martineau L, Shek PN (2007) Hydrogel–elastomer composite biomaterials: 1. Preparation of interpenetrating polymer networks and in vitro characterization of swelling stability and mechanical properties. J Mater Sci Mater Med 18(6):975–986CrossRef Peng HT, Martineau L, Shek PN (2007) Hydrogel–elastomer composite biomaterials: 1. Preparation of interpenetrating polymer networks and in vitro characterization of swelling stability and mechanical properties. J Mater Sci Mater Med 18(6):975–986CrossRef
42.
go back to reference Xing Q et al (2014) Increasing mechanical strength of gelatin hydrogels by divalent metal ion removal. Sci Rep 4 Xing Q et al (2014) Increasing mechanical strength of gelatin hydrogels by divalent metal ion removal. Sci Rep 4
43.
go back to reference Valappil SP et al (2009) Controlled delivery of antimicrobial gallium ions from phosphate-based glasses. Acta Biomater 5(4):1198–1210CrossRef Valappil SP et al (2009) Controlled delivery of antimicrobial gallium ions from phosphate-based glasses. Acta Biomater 5(4):1198–1210CrossRef
44.
go back to reference Brown ML et al (2011) Ion release from a novel orthodontic resin bonding agent for the reduction and/or prevention of white spot lesions: an in vitro study. Angle Orthod 81(6):1014–1020CrossRef Brown ML et al (2011) Ion release from a novel orthodontic resin bonding agent for the reduction and/or prevention of white spot lesions: an in vitro study. Angle Orthod 81(6):1014–1020CrossRef
45.
go back to reference Mozafari M et al (2010) Biomimetic formation of apatite on the surface of porous gelatin/bioactive glass nanocomposite scaffolds. Appl Surf Sci 257(5):1740–1749CrossRef Mozafari M et al (2010) Biomimetic formation of apatite on the surface of porous gelatin/bioactive glass nanocomposite scaffolds. Appl Surf Sci 257(5):1740–1749CrossRef
46.
go back to reference Anselme K (2000) Osteoblast adhesion on biomaterials. Biomaterials 21(7):667–681CrossRef Anselme K (2000) Osteoblast adhesion on biomaterials. Biomaterials 21(7):667–681CrossRef
47.
go back to reference Hench LL (1998) Biomaterials: a forecast for the future. Biomaterials 19(16):1419–1423CrossRef Hench LL (1998) Biomaterials: a forecast for the future. Biomaterials 19(16):1419–1423CrossRef
48.
go back to reference Kim HW, Lee HH, Chun GS (2008) Bioactivity and osteoblast responses of novel biomedical nanocomposites of bioactive glass nanofiber filled poly (lactic acid). J Biomed Mater Res Part A 85(3):651–663CrossRef Kim HW, Lee HH, Chun GS (2008) Bioactivity and osteoblast responses of novel biomedical nanocomposites of bioactive glass nanofiber filled poly (lactic acid). J Biomed Mater Res Part A 85(3):651–663CrossRef
49.
go back to reference Lu HH et al (2003) Three-dimensional, bioactive, biodegradable, polymer–bioactive glass composite scaffolds with improved mechanical properties support collagen synthesis and mineralization of human osteoblast-like cells in vitro. J Biomed Mater Res Part A 64(3):465–474CrossRef Lu HH et al (2003) Three-dimensional, bioactive, biodegradable, polymer–bioactive glass composite scaffolds with improved mechanical properties support collagen synthesis and mineralization of human osteoblast-like cells in vitro. J Biomed Mater Res Part A 64(3):465–474CrossRef
50.
go back to reference Jenis LG et al (1993) Effect of gallium nitrate in vitro and in normal rats. J Cell Biochem 52(3):330–336CrossRef Jenis LG et al (1993) Effect of gallium nitrate in vitro and in normal rats. J Cell Biochem 52(3):330–336CrossRef
51.
go back to reference Bockman RS et al (1993) Gallium nitrate increases type I collagen and fibronectin mRNA and collagen protein levels in bone and fibroblast cells. J Cell Biochem 52(4):396–403CrossRef Bockman RS et al (1993) Gallium nitrate increases type I collagen and fibronectin mRNA and collagen protein levels in bone and fibroblast cells. J Cell Biochem 52(4):396–403CrossRef
52.
go back to reference Verron E, Bouler J, Scimeca J (2012) Gallium as a potential candidate for treatment of osteoporosis. Drug Discov Today 17(19):1127–1132CrossRef Verron E, Bouler J, Scimeca J (2012) Gallium as a potential candidate for treatment of osteoporosis. Drug Discov Today 17(19):1127–1132CrossRef
53.
go back to reference Ito A et al (2002) Zinc-releasing calcium phosphate for stimulating bone formation. Mater Sci Eng C 22(1):21–25CrossRef Ito A et al (2002) Zinc-releasing calcium phosphate for stimulating bone formation. Mater Sci Eng C 22(1):21–25CrossRef
54.
go back to reference Mourino V, Newby P, Boccaccini AR (2010) Preparation and characterization of gallium releasing 3-D alginate coated 45S5 bioglass® based scaffolds for bone tissue engineering. Adv Eng Mater 12(7):B283–B291CrossRef Mourino V, Newby P, Boccaccini AR (2010) Preparation and characterization of gallium releasing 3-D alginate coated 45S5 bioglass® based scaffolds for bone tissue engineering. Adv Eng Mater 12(7):B283–B291CrossRef
Metadata
Title
Fabrication and characterization of poly(octanediol citrate)/gallium-containing bioglass microcomposite scaffolds
Authors
Ehsan Zeimaran
Sara Pourshahrestani
Belinda Pingguan-Murphy
Nahrizul Adib Kadri
Hussin A. Rothan
Rohana Yusof
Mark R. Towler
Ivan Djordjevic
Publication date
01-03-2015
Publisher
Springer US
Published in
Journal of Materials Science / Issue 5/2015
Print ISSN: 0022-2461
Electronic ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-014-8782-2

Other articles of this Issue 5/2015

Journal of Materials Science 5/2015 Go to the issue

Premium Partners