Skip to main content
Top

2016 | OriginalPaper | Chapter

7. Polyanionic Compounds as Cathode Materials

Authors : Christian Julien, Alain Mauger, Ashok Vijh, Karim Zaghib

Published in: Lithium Batteries

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Polyanionic compounds have emerged as novel lithium insertion compounds and considered as the most advanced positive electrodes for the next generation of Li-ion batteries owing to their advantages with regard to low cost, non-toxicity, environmental friendliness, and high safety. From the safety view point, compared to metal-oxide cathodes, these materials rank number one, with a remarkable thermal stability and tolerance to overcharge and over-discharge. This chapter outlines the structural, physical, and electrochemical properties of lithium-phosphate compounds. Several aspects that are important for applications are discussed such as morphology upon synthesis, residual impurities and surface state of particles. These impurities are identified and a quantitative estimate of their concentrations is deduced from the combination of analytical methods. LiFePO4 has won the challenge to be the active element for the positive electrode of Li-ion batteries for electro-mobility. An optimized preparation provides materials with carbon-coated particles free of any impurity phase, insuring structural stability and electrochemical performance that justify the use of this material as a cathode element in new generation of lithium secondary batteries operating for powering hybrid electric vehicles and full electric vehicles.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Padhi K, Nanjundaswamy KS, Goodenough JB (1997) Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. J Electrochem Soc 144:1188–1194CrossRef Padhi K, Nanjundaswamy KS, Goodenough JB (1997) Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. J Electrochem Soc 144:1188–1194CrossRef
2.
go back to reference Padhi K, Nanjundaswamy KS, Masquelier C, Okada S, Goodenough JB (1997) Effect of structure on the Fe3+/Fe2+ redox couple in iron phosphates. J Electrochem Soc 144:1609–1613CrossRef Padhi K, Nanjundaswamy KS, Masquelier C, Okada S, Goodenough JB (1997) Effect of structure on the Fe3+/Fe2+ redox couple in iron phosphates. J Electrochem Soc 144:1609–1613CrossRef
3.
go back to reference Huang H, Yin SC, Nazar LF (2001) Approaching theoretical capacity of LiFePO4 at room temperature at high rates. Electrochem Solid State Lett 4:A170–A172CrossRef Huang H, Yin SC, Nazar LF (2001) Approaching theoretical capacity of LiFePO4 at room temperature at high rates. Electrochem Solid State Lett 4:A170–A172CrossRef
4.
go back to reference Dominko D, Gaberscek M, Drofenik J, Bele M, Jamnik J (2003) Influence of carbon black distribution on performance of oxide cathodes for Li ion batteries. Electrochim Acta 48:3709–3716CrossRef Dominko D, Gaberscek M, Drofenik J, Bele M, Jamnik J (2003) Influence of carbon black distribution on performance of oxide cathodes for Li ion batteries. Electrochim Acta 48:3709–3716CrossRef
5.
go back to reference Ravet N, Goodenough JB, Besner S, Simoneau M, Hovington P, Armand M (1999) Improved iron based cathode material. In: Proceedings of the 196th ECS meeting, Honolulu, Oct 1999, extended abstract n° 127 Ravet N, Goodenough JB, Besner S, Simoneau M, Hovington P, Armand M (1999) Improved iron based cathode material. In: Proceedings of the 196th ECS meeting, Honolulu, Oct 1999, extended abstract n° 127
6.
go back to reference Ravet N, Chouinard Y, Magnan JF, Besner S, Gauthier M, Armand M (2001) Electroactivity of natural and synthetic triphylite. J Power Sourc 97:503–507CrossRef Ravet N, Chouinard Y, Magnan JF, Besner S, Gauthier M, Armand M (2001) Electroactivity of natural and synthetic triphylite. J Power Sourc 97:503–507CrossRef
7.
go back to reference Bewlay SL, Konstantinov K, Wang GX, Dou SX, Liu HK (2004) Conductivity improvements to spray-produced LiFePO4 by addition of a carbon source. Mater Lett 58:1788–1791CrossRef Bewlay SL, Konstantinov K, Wang GX, Dou SX, Liu HK (2004) Conductivity improvements to spray-produced LiFePO4 by addition of a carbon source. Mater Lett 58:1788–1791CrossRef
8.
go back to reference Chen Z, Dahn JR (2002) Reducing carbon in LiFePO4/C composite electrodes to maximize specific energy, volumetric energy and tap density. J Electrochem Soc 149:A1184–A1189CrossRef Chen Z, Dahn JR (2002) Reducing carbon in LiFePO4/C composite electrodes to maximize specific energy, volumetric energy and tap density. J Electrochem Soc 149:A1184–A1189CrossRef
9.
go back to reference Ravet N, Besner S, Simoneau M, Vallée A, Armand M, Magnan JF (2005) Electrode materials with high surface conductivity. US Patent 6,962,666, 8 Nov 2005 Ravet N, Besner S, Simoneau M, Vallée A, Armand M, Magnan JF (2005) Electrode materials with high surface conductivity. US Patent 6,962,666, 8 Nov 2005
10.
go back to reference Ait-Salah A, Mauger A, Julien CM, Gendron F (2006) Nanosized impurity phases in relation to the mode of preparation of LiFeO4. effects. Mater Sci Eng B 129:232–244CrossRef Ait-Salah A, Mauger A, Julien CM, Gendron F (2006) Nanosized impurity phases in relation to the mode of preparation of LiFeO4. effects. Mater Sci Eng B 129:232–244CrossRef
11.
go back to reference Herle PS, Ellis B, Coombs N, Nazar LF (2004) Nano-network electronic conduction in iron and nickel olivine phosphates. Nat Mater 3:147–152CrossRef Herle PS, Ellis B, Coombs N, Nazar LF (2004) Nano-network electronic conduction in iron and nickel olivine phosphates. Nat Mater 3:147–152CrossRef
12.
go back to reference Ait-Salah A, Dodd J, Mauger A, Yazami R, Gendron F, Julien CM (2006) Structural and magnetic properties of LiFePO4 and lithium extraction effects. Z Allg Inorg Chem 632:1598–1605CrossRef Ait-Salah A, Dodd J, Mauger A, Yazami R, Gendron F, Julien CM (2006) Structural and magnetic properties of LiFePO4 and lithium extraction effects. Z Allg Inorg Chem 632:1598–1605CrossRef
13.
go back to reference Ravet N, Gauthier M, Zaghib K, Goodenough JB, Mauger A, Gendron F, Julien CM (2007) Mechanism of the Fe3+ reduction at low temperature for LiFePO4 synthesis from a polymeric additive. Chem Mater 19:2595–2602CrossRef Ravet N, Gauthier M, Zaghib K, Goodenough JB, Mauger A, Gendron F, Julien CM (2007) Mechanism of the Fe3+ reduction at low temperature for LiFePO4 synthesis from a polymeric additive. Chem Mater 19:2595–2602CrossRef
14.
go back to reference Ellis BL, Lee KT, Nazar LF (2010) Positive electrode materials for Li-ion and Li-batteries. Chem Mater 22:691–714CrossRef Ellis BL, Lee KT, Nazar LF (2010) Positive electrode materials for Li-ion and Li-batteries. Chem Mater 22:691–714CrossRef
15.
go back to reference Fergus JW (2010) Recent developments in cathode materials for lithium ion batteries. J Power Sourc 195:939–954CrossRef Fergus JW (2010) Recent developments in cathode materials for lithium ion batteries. J Power Sourc 195:939–954CrossRef
16.
go back to reference Zaghib K, Mauger A, Julien CM (2012) Overwiew of olivines in lithium batteries for green transportation and energy storage. J Solid State Electrochem 16:835–845CrossRef Zaghib K, Mauger A, Julien CM (2012) Overwiew of olivines in lithium batteries for green transportation and energy storage. J Solid State Electrochem 16:835–845CrossRef
17.
go back to reference Zaghib K, Shim J, Guerfi A, Charest P, Striebel KA (2005) Effect of carbon source as additive in LiFePO4 as positive electrode for Li-ion batteries. Electrochem Solid State Lett 8:A207–A210CrossRef Zaghib K, Shim J, Guerfi A, Charest P, Striebel KA (2005) Effect of carbon source as additive in LiFePO4 as positive electrode for Li-ion batteries. Electrochem Solid State Lett 8:A207–A210CrossRef
18.
go back to reference Zaghib K, Armand M (2002) Electrode covered with a film obtained from an aqueous solution containing a water soluble binder, manufacturing process and uses thereof. Canadian Patent CA 2,411,695 Zaghib K, Armand M (2002) Electrode covered with a film obtained from an aqueous solution containing a water soluble binder, manufacturing process and uses thereof. Canadian Patent CA 2,411,695
19.
go back to reference Cho YD, Frey GTK, Kao HM (2009) The effect of carbon coating thickness on the capacity of LiFePO4/C composite cathodes. J Power Sourc 189:256–262CrossRef Cho YD, Frey GTK, Kao HM (2009) The effect of carbon coating thickness on the capacity of LiFePO4/C composite cathodes. J Power Sourc 189:256–262CrossRef
20.
go back to reference Lu CZ, Frey GTK, Kao HM (2009) Study of LiFePO4 cathode materials coated with high surface area carbon. J Power Sourc 189:155–162CrossRef Lu CZ, Frey GTK, Kao HM (2009) Study of LiFePO4 cathode materials coated with high surface area carbon. J Power Sourc 189:155–162CrossRef
21.
go back to reference Zaghib K, Mauger A, Gendron F, Julien CM (2008) Magnetic studies of phospho-olivine electrodes in relation with their electrochemical performance in Li-ion batteries. Solid State Ionics 179:16–23CrossRef Zaghib K, Mauger A, Gendron F, Julien CM (2008) Magnetic studies of phospho-olivine electrodes in relation with their electrochemical performance in Li-ion batteries. Solid State Ionics 179:16–23CrossRef
22.
go back to reference Yamada A, Chung SC, Hinokuma K (2001) Optimized LiFePO4 for lithium battery cathodes. J Electrochem Soc 148:A224–A229CrossRef Yamada A, Chung SC, Hinokuma K (2001) Optimized LiFePO4 for lithium battery cathodes. J Electrochem Soc 148:A224–A229CrossRef
23.
go back to reference Julien CM, Mauger A, Ait-Salah A, Massot M, Gendron F, Zaghib K (2007) Nanoscopic scale studies of LiFePO4 as cathode material in lithium-ion batteries for HEV application. Ionics 13:395–411CrossRef Julien CM, Mauger A, Ait-Salah A, Massot M, Gendron F, Zaghib K (2007) Nanoscopic scale studies of LiFePO4 as cathode material in lithium-ion batteries for HEV application. Ionics 13:395–411CrossRef
24.
go back to reference Julien CM, Zaghib K, Mauger A, Massot M, Ait-Salah A, Selmane M, Gendron F (2006) Characterization of the carbon-coating onto LiFePO4 particles used in lithium batteries. J Appl Phys 100:063511CrossRef Julien CM, Zaghib K, Mauger A, Massot M, Ait-Salah A, Selmane M, Gendron F (2006) Characterization of the carbon-coating onto LiFePO4 particles used in lithium batteries. J Appl Phys 100:063511CrossRef
25.
go back to reference Doeff MM, Wilcox JD, Kostecki R, Lau G (2006) Optimization of carbon coatings on LiFePO4. J Power Sourc 163:180–184CrossRef Doeff MM, Wilcox JD, Kostecki R, Lau G (2006) Optimization of carbon coatings on LiFePO4. J Power Sourc 163:180–184CrossRef
26.
go back to reference Dominko R, Bele M, Gaberscek M, Remskar M, Hanzel D, Goupil JM, Pejovnik S, Jamnik J (2006) Porous olivine composites synthesized by sol–gel technique. J Power Sourc 153:274–280CrossRef Dominko R, Bele M, Gaberscek M, Remskar M, Hanzel D, Goupil JM, Pejovnik S, Jamnik J (2006) Porous olivine composites synthesized by sol–gel technique. J Power Sourc 153:274–280CrossRef
27.
go back to reference Gaberscek M, Dominko R, Bele M, Remskar M, Hanzel D, Jamnik J (2005) Porous, carbon-decorated LiFePO4 prepared by sol–gel method based on citric acid. Solid State Ionics 176:1801–1805CrossRef Gaberscek M, Dominko R, Bele M, Remskar M, Hanzel D, Jamnik J (2005) Porous, carbon-decorated LiFePO4 prepared by sol–gel method based on citric acid. Solid State Ionics 176:1801–1805CrossRef
28.
go back to reference Dominko R, Goupil JM, Bele M, Gaberscek M, Remskar M, Hanzel D, Jamnik J (2005) Impact of LiFePO4/C composites porosity on their electrochemical performance. J Electrochem Soc 152:A858–A863CrossRef Dominko R, Goupil JM, Bele M, Gaberscek M, Remskar M, Hanzel D, Jamnik J (2005) Impact of LiFePO4/C composites porosity on their electrochemical performance. J Electrochem Soc 152:A858–A863CrossRef
29.
go back to reference Dominko R, Bele M, Gaberscek M, Remskar M, Hanzel D, Pejovnik S, Jamnik J (2005) Impact of the carbon coating thickness on the electrochemical performance of LiFePO4/C composites. J Electrochem Soc 152:A607–A610CrossRef Dominko R, Bele M, Gaberscek M, Remskar M, Hanzel D, Pejovnik S, Jamnik J (2005) Impact of the carbon coating thickness on the electrochemical performance of LiFePO4/C composites. J Electrochem Soc 152:A607–A610CrossRef
30.
go back to reference Yang S, Zavajil PY, Whittingham MS (2001) Hydrothermal synthesis of lithium iron phosphate cathodes. Electrochem Commun 3:505–508CrossRef Yang S, Zavajil PY, Whittingham MS (2001) Hydrothermal synthesis of lithium iron phosphate cathodes. Electrochem Commun 3:505–508CrossRef
31.
go back to reference Sato M, Tajimi S, Okawa H, Uematsu K, Toda K (2002) Preparation of iron phosphate cathode material of Li3Fe2(PO4)3 by hydrothermal reaction and thermal decomposition processes. Solid State Ionics 152–153:247–251CrossRef Sato M, Tajimi S, Okawa H, Uematsu K, Toda K (2002) Preparation of iron phosphate cathode material of Li3Fe2(PO4)3 by hydrothermal reaction and thermal decomposition processes. Solid State Ionics 152–153:247–251CrossRef
32.
go back to reference Dokko K, Koizumi S, Kanamura K (2006) Electrochemical reactivity of LiFePO4 prepared by hydrothermal method. Chem Lett 35:338–339CrossRef Dokko K, Koizumi S, Kanamura K (2006) Electrochemical reactivity of LiFePO4 prepared by hydrothermal method. Chem Lett 35:338–339CrossRef
33.
go back to reference Murugan AV, Muraliganth T, Manthiram A (2009) One-pot microwave-hydrothermal synthesis and characterization of carbon-coated LiMPO4 (M = Mn, Fe, and Co) cathodes. Electrochem Soc 156:A79–A83CrossRef Murugan AV, Muraliganth T, Manthiram A (2009) One-pot microwave-hydrothermal synthesis and characterization of carbon-coated LiMPO4 (M = Mn, Fe, and Co) cathodes. Electrochem Soc 156:A79–A83CrossRef
34.
go back to reference Meligrana G, Gerbaldi C, Tuel A, Bodoardo S, Penazzi N (2006) Hydrothermal synthesis of high surface LiFePO4 powders as cathode for Li-ion cells. J Power Sourc 160:516–522CrossRef Meligrana G, Gerbaldi C, Tuel A, Bodoardo S, Penazzi N (2006) Hydrothermal synthesis of high surface LiFePO4 powders as cathode for Li-ion cells. J Power Sourc 160:516–522CrossRef
35.
go back to reference Shiraishi K, Dokko K, Kanamura K (2005) Formation of impurities on phospho-olivine LiFePO4 during hydrothermal synthesis. J Power Sourc 146:555–558CrossRef Shiraishi K, Dokko K, Kanamura K (2005) Formation of impurities on phospho-olivine LiFePO4 during hydrothermal synthesis. J Power Sourc 146:555–558CrossRef
36.
go back to reference Franger S, Le Cras F, Bourbon C, Rouanlt H (2003) Comparison between different LiFePO4 synthesis routes and their influence on its physico-chemical properties. J Power Sourc 119–121:252–257CrossRef Franger S, Le Cras F, Bourbon C, Rouanlt H (2003) Comparison between different LiFePO4 synthesis routes and their influence on its physico-chemical properties. J Power Sourc 119–121:252–257CrossRef
37.
go back to reference Tajimi S, Ikeda Y, Uematsu K, Toda K, Sato M (2004) Enhanced electrochemical performance of LiFePO4 prepared by hydrothermal reaction. Solid State Ionics 175:287–290CrossRef Tajimi S, Ikeda Y, Uematsu K, Toda K, Sato M (2004) Enhanced electrochemical performance of LiFePO4 prepared by hydrothermal reaction. Solid State Ionics 175:287–290CrossRef
38.
go back to reference Lee J, Teja AS (2006) Synthesis of LiFePO4 micro and nanoparticles in supercritical water. Mater Lett 60:2105–2109CrossRef Lee J, Teja AS (2006) Synthesis of LiFePO4 micro and nanoparticles in supercritical water. Mater Lett 60:2105–2109CrossRef
39.
go back to reference Dokko K, Koizumi S, Sharaishi K, Kananura K (2007) Electrochemical properties of LiFePO4 prepared via hydrothermal route. J Power Sourc 165:656–659CrossRef Dokko K, Koizumi S, Sharaishi K, Kananura K (2007) Electrochemical properties of LiFePO4 prepared via hydrothermal route. J Power Sourc 165:656–659CrossRef
40.
go back to reference Jin B, Gu HB (2008) Preparation and characterization of LiFePO4 cathode materials by hydrothermal method. Solid State Ionics 178:1907–1914CrossRef Jin B, Gu HB (2008) Preparation and characterization of LiFePO4 cathode materials by hydrothermal method. Solid State Ionics 178:1907–1914CrossRef
41.
go back to reference Brochu F, Guerfi A, Trottier J, Kopeć M, Mauger A, Groult H, Julien CM, Zaghib K (2012) Structure and electrochemistry of scaling nano C-LiFePO4 synthesized by hydrothermal route: complexing agent effect. J Power Sourc 214:1–6CrossRef Brochu F, Guerfi A, Trottier J, Kopeć M, Mauger A, Groult H, Julien CM, Zaghib K (2012) Structure and electrochemistry of scaling nano C-LiFePO4 synthesized by hydrothermal route: complexing agent effect. J Power Sourc 214:1–6CrossRef
42.
go back to reference Delacourt C, Poizot P, Levasseur S, Masquelier C (2009) Size effects on carbon-free LiFePO4 powders. Electrochem Solid State Lett 9:A352–A355CrossRef Delacourt C, Poizot P, Levasseur S, Masquelier C (2009) Size effects on carbon-free LiFePO4 powders. Electrochem Solid State Lett 9:A352–A355CrossRef
43.
go back to reference Arnold G, Garche J, Hemmer R, Ströbele S, Vogler C, Wohlfgang-Mehrens M (2003) Fine-particle lithium iron phosphate LiFePO4 synthesized by a new low-cost aqueous precipitation technique. J Power Sourc 119–121:247–251CrossRef Arnold G, Garche J, Hemmer R, Ströbele S, Vogler C, Wohlfgang-Mehrens M (2003) Fine-particle lithium iron phosphate LiFePO4 synthesized by a new low-cost aqueous precipitation technique. J Power Sourc 119–121:247–251CrossRef
44.
go back to reference Wang Y, Sun B, Park J, Kim WS, Kim HS, Wang G (2011) Morphology control and electrochemical properties of nanosize LiFePO4 cathode material synthesized by co-precipitation combined with in situ polymerization. J Alloys Compd 509:1040–1044CrossRef Wang Y, Sun B, Park J, Kim WS, Kim HS, Wang G (2011) Morphology control and electrochemical properties of nanosize LiFePO4 cathode material synthesized by co-precipitation combined with in situ polymerization. J Alloys Compd 509:1040–1044CrossRef
45.
go back to reference Ding Y, Jiang Y, Xu F, Yin J, Ren H, Zhuo Q, Long Z, Zhang P (2010) Preparation of nano-structured LiFePO4/graphene composites by co-precipitation method. Electrochem Commun 12:10–13CrossRef Ding Y, Jiang Y, Xu F, Yin J, Ren H, Zhuo Q, Long Z, Zhang P (2010) Preparation of nano-structured LiFePO4/graphene composites by co-precipitation method. Electrochem Commun 12:10–13CrossRef
46.
go back to reference Park KS, Son JT, Chung HT, Kim SJ, Lee CH, Kim HG (2003) Synthesis of LiFePO4 by co-precipitation and microwave heating. Electrochem Commun 5:839–842CrossRef Park KS, Son JT, Chung HT, Kim SJ, Lee CH, Kim HG (2003) Synthesis of LiFePO4 by co-precipitation and microwave heating. Electrochem Commun 5:839–842CrossRef
47.
go back to reference Higuchi M, Katayama K, Azuma Y, Yukawa M, Suhara M (2003) Synthesis of LiFePO4 cathode material by microwave processing. J Power Sourc 119–121:258–261CrossRef Higuchi M, Katayama K, Azuma Y, Yukawa M, Suhara M (2003) Synthesis of LiFePO4 cathode material by microwave processing. J Power Sourc 119–121:258–261CrossRef
48.
go back to reference Beninati S, Damen L, Mastragostino M (2008) MW-assisted synthesis of LiFePO4 for high power applications. J Power Sourc 180:875–879CrossRef Beninati S, Damen L, Mastragostino M (2008) MW-assisted synthesis of LiFePO4 for high power applications. J Power Sourc 180:875–879CrossRef
49.
go back to reference Wang L, Huang Y, Jiang R, Jia D (2007) Preparation and characterization of nano-sized LiFePO4 by low heating solid-state coordination method and microwave heating. Electrochim Acta 52:6778–6783CrossRef Wang L, Huang Y, Jiang R, Jia D (2007) Preparation and characterization of nano-sized LiFePO4 by low heating solid-state coordination method and microwave heating. Electrochim Acta 52:6778–6783CrossRef
50.
go back to reference Hu X, Yu JC (2008) Continous aspect-ratio tuning and fine shape control of monodisperse α-Fe2O3 nanocrystals by a programmed microwave-hydrothermal method. Adv Funct Mater 18:880–887CrossRef Hu X, Yu JC (2008) Continous aspect-ratio tuning and fine shape control of monodisperse α-Fe2O3 nanocrystals by a programmed microwave-hydrothermal method. Adv Funct Mater 18:880–887CrossRef
51.
go back to reference Qin X, Wang X, Xiang H, Xie J, Li J, Zhou Y (2010) Mechanism for hydrothermal synthesis of LiFePO4 platelets as cathode material for lithuium-ion batteries. J Phys Chem C 114:16806–16812CrossRef Qin X, Wang X, Xiang H, Xie J, Li J, Zhou Y (2010) Mechanism for hydrothermal synthesis of LiFePO4 platelets as cathode material for lithuium-ion batteries. J Phys Chem C 114:16806–16812CrossRef
52.
go back to reference Gerbec JA, Morgan D, Washington A, Strouse GF (2005) Microwave-enhanced reaction rates for nanoparticle synthesis. J Am Chem Soc 127:15791–15800CrossRef Gerbec JA, Morgan D, Washington A, Strouse GF (2005) Microwave-enhanced reaction rates for nanoparticle synthesis. J Am Chem Soc 127:15791–15800CrossRef
53.
go back to reference Feng H, Zhang Y, Wu X, Wang L, Zhang A, Xia T, Dong H, Liu M (2009) One-step microwave synthesis and characterization of carbon-modified nanocrystalline LiFePO4. Electrochim Acta 54:3206–3210CrossRef Feng H, Zhang Y, Wu X, Wang L, Zhang A, Xia T, Dong H, Liu M (2009) One-step microwave synthesis and characterization of carbon-modified nanocrystalline LiFePO4. Electrochim Acta 54:3206–3210CrossRef
54.
go back to reference Bileka I, Hintennach A, Djerdj I, Novak P, Niederberger M (2009) Efficient microwave-assisted synthesis of LiFePO4 mesocrystals with high cycling stability. J Mater Chem 19:5125–5128CrossRef Bileka I, Hintennach A, Djerdj I, Novak P, Niederberger M (2009) Efficient microwave-assisted synthesis of LiFePO4 mesocrystals with high cycling stability. J Mater Chem 19:5125–5128CrossRef
55.
go back to reference Kim DH, Kim J (2006) Synthesis of LiFePO4 nanoparticles in polyol medium and their electrochemical properties. Electrochem Solid State Lett 9:A439–A442CrossRef Kim DH, Kim J (2006) Synthesis of LiFePO4 nanoparticles in polyol medium and their electrochemical properties. Electrochem Solid State Lett 9:A439–A442CrossRef
56.
go back to reference Kim DH, Kim J (2007) Synthesis of LiFePO4 nanoparticles and their electrochemical properties. J Phys Chem Solids 68:734–737CrossRef Kim DH, Kim J (2007) Synthesis of LiFePO4 nanoparticles and their electrochemical properties. J Phys Chem Solids 68:734–737CrossRef
57.
go back to reference Kim DH, Kang JW, Jung IO, Lim JS, Kim EJ, Song SJ, Lee JS, Kim J (2008) Microwave assisted synthesis of nanocrystalline Fe-phosphates electrode materials and their electrochemical propperties. J Nanosci Nanotechnol 8:5376–5379CrossRef Kim DH, Kang JW, Jung IO, Lim JS, Kim EJ, Song SJ, Lee JS, Kim J (2008) Microwave assisted synthesis of nanocrystalline Fe-phosphates electrode materials and their electrochemical propperties. J Nanosci Nanotechnol 8:5376–5379CrossRef
58.
go back to reference Kim DH, Lim JS, Kang JW, Kang JW, Kim EJ, Ahn HY, Kim J (2007) A new synthesis route to nanocrystalline olivine phosphates and their electrochemical properties. J Nanosci Nanotechnol 7:3949–3953CrossRef Kim DH, Lim JS, Kang JW, Kang JW, Kim EJ, Ahn HY, Kim J (2007) A new synthesis route to nanocrystalline olivine phosphates and their electrochemical properties. J Nanosci Nanotechnol 7:3949–3953CrossRef
59.
go back to reference Saravanan K, Reddy MV, Balaya P, Gong H, Chowvari BVR, Vittal JJ (2009) Storage performance of LiFePO4 nanoplates. J Mater Chem 19:605–610CrossRef Saravanan K, Reddy MV, Balaya P, Gong H, Chowvari BVR, Vittal JJ (2009) Storage performance of LiFePO4 nanoplates. J Mater Chem 19:605–610CrossRef
60.
go back to reference Yang H, Wu XL, Cao MH, Guo YG (2009) Solvothermal synthesis of LiFePO4 hierarchically dumbbell-like microstructures by nanoplate self-assembly and their application as a cathode material in lithium-ion batteries. J Phys Chem C 113:3345–3351CrossRef Yang H, Wu XL, Cao MH, Guo YG (2009) Solvothermal synthesis of LiFePO4 hierarchically dumbbell-like microstructures by nanoplate self-assembly and their application as a cathode material in lithium-ion batteries. J Phys Chem C 113:3345–3351CrossRef
61.
go back to reference Myung ST, Komaba S, Hirosaki N, Yashiro H, Kumagai N (2004) Emulsion drying synthesis of olivine LiFePO4/C composite and its electrochemical properties as lithium intercalation material. Electrochim Acta 49:4213–4222CrossRef Myung ST, Komaba S, Hirosaki N, Yashiro H, Kumagai N (2004) Emulsion drying synthesis of olivine LiFePO4/C composite and its electrochemical properties as lithium intercalation material. Electrochim Acta 49:4213–4222CrossRef
62.
go back to reference Konstantinov K, Bewlay S, Wang GX, Lindsay M, Wang JZ (2004) New approach for synthesis of carbon-mixed LiFePO4 cathode materials. Electrochim Acta 50:421–426CrossRef Konstantinov K, Bewlay S, Wang GX, Lindsay M, Wang JZ (2004) New approach for synthesis of carbon-mixed LiFePO4 cathode materials. Electrochim Acta 50:421–426CrossRef
63.
go back to reference Konarova M, Taniguchi I (2009) Preparation of carbon coated LiFePO4 by a combination of spray pyrolysis with planetary ball-milling followed by heat treatment and their electrochemical properties. Powder Technol 191:111–116CrossRef Konarova M, Taniguchi I (2009) Preparation of carbon coated LiFePO4 by a combination of spray pyrolysis with planetary ball-milling followed by heat treatment and their electrochemical properties. Powder Technol 191:111–116CrossRef
64.
go back to reference Konarova M, Taniguchi I (2010) Synthesis of carbon-coated LiFePO4 nanoparticles with high rate performance in lithium secondary batteries. J Power Sourc 195:3661–3667CrossRef Konarova M, Taniguchi I (2010) Synthesis of carbon-coated LiFePO4 nanoparticles with high rate performance in lithium secondary batteries. J Power Sourc 195:3661–3667CrossRef
65.
go back to reference Cides CR, Croce F, Young VY, Martin CR, Scrosati B (2005) A high-rate, nanocomposite LiFePO4/carbon cathode. Electrochem Solid State Lett 8:A484–A487CrossRef Cides CR, Croce F, Young VY, Martin CR, Scrosati B (2005) A high-rate, nanocomposite LiFePO4/carbon cathode. Electrochem Solid State Lett 8:A484–A487CrossRef
66.
go back to reference Lim S, Yoon CS, Cho J (2008) Synthesis of nanowire and hollow LiFePO4 cathodes for high-performance lithium batteries. Chem Mater 20:4560–4564CrossRef Lim S, Yoon CS, Cho J (2008) Synthesis of nanowire and hollow LiFePO4 cathodes for high-performance lithium batteries. Chem Mater 20:4560–4564CrossRef
67.
go back to reference Doherty CM, Caruso RA, Smarsly BM, Drummond CJ (2009) Colloidal crystal templating to produce hierarchically porous LiFePO4 electrode materials for high power lithium ion batteries. Chem Mater 21:2895–2903CrossRef Doherty CM, Caruso RA, Smarsly BM, Drummond CJ (2009) Colloidal crystal templating to produce hierarchically porous LiFePO4 electrode materials for high power lithium ion batteries. Chem Mater 21:2895–2903CrossRef
68.
go back to reference Hwang BJ, Hsu KF, Hu SK, Cheng MY, Chou TC (2009) Template-free reverse micelle process for the synthesis of a rod-like LiFePO4/C composite cathode for lithium batteries. J Power Sourc 194:515–519CrossRef Hwang BJ, Hsu KF, Hu SK, Cheng MY, Chou TC (2009) Template-free reverse micelle process for the synthesis of a rod-like LiFePO4/C composite cathode for lithium batteries. J Power Sourc 194:515–519CrossRef
69.
go back to reference Zaghib K, Mauger A, Gendron F, Julien CM (2008) Surface effects on the physical and electrochemical properties of thin LiFePO4 particles. Chem Mater 20:462–469CrossRef Zaghib K, Mauger A, Gendron F, Julien CM (2008) Surface effects on the physical and electrochemical properties of thin LiFePO4 particles. Chem Mater 20:462–469CrossRef
70.
go back to reference Kim JK, Cheruvally G, Choi JW, Kim JU, Ahn JH, Cho GB, Kim KW, Ahn H-J (2007) Effect of mechanical activation process parameters on the properties of LiFePO4 cathode material. J Power Sourc 166:211–218CrossRef Kim JK, Cheruvally G, Choi JW, Kim JU, Ahn JH, Cho GB, Kim KW, Ahn H-J (2007) Effect of mechanical activation process parameters on the properties of LiFePO4 cathode material. J Power Sourc 166:211–218CrossRef
71.
go back to reference Shin HC, Cho WI, Jang H (2006) Electrochemical properties of carbon-coated LiFePO4 cathode using graphite, carbon black, and acetylene black. Electrochim Acta 52:1472–1476CrossRef Shin HC, Cho WI, Jang H (2006) Electrochemical properties of carbon-coated LiFePO4 cathode using graphite, carbon black, and acetylene black. Electrochim Acta 52:1472–1476CrossRef
72.
go back to reference Kim JK, Choi JW, Cheruvally G, Kim JU, Ahn JH, Cho GB, Kim KW, Ahn HJ (2007) A modified mechanical activation synthesis for carbon-coated LiFePO4 cathode in lithium batteries. Mater Lett 61:3822–3825CrossRef Kim JK, Choi JW, Cheruvally G, Kim JU, Ahn JH, Cho GB, Kim KW, Ahn HJ (2007) A modified mechanical activation synthesis for carbon-coated LiFePO4 cathode in lithium batteries. Mater Lett 61:3822–3825CrossRef
73.
go back to reference Kang HC, Jun DK, Jin B, Jin EM, Park KH, Gu HB, Kim KW (2008) Optimized solid-state synthesis of LiFePO4 cathode materials using ball-milling. J Power Sourc 179:340–346CrossRef Kang HC, Jun DK, Jin B, Jin EM, Park KH, Gu HB, Kim KW (2008) Optimized solid-state synthesis of LiFePO4 cathode materials using ball-milling. J Power Sourc 179:340–346CrossRef
74.
go back to reference Maxisch T, Zhou F, Ceder G (2006) Ab initio study of the migration of small polarons in olivine LixFePO4 and their association with lithium ions and vacancies. Phys Rev B 73:104301CrossRef Maxisch T, Zhou F, Ceder G (2006) Ab initio study of the migration of small polarons in olivine LixFePO4 and their association with lithium ions and vacancies. Phys Rev B 73:104301CrossRef
75.
go back to reference Islam MS, Driscoll DJ, Fischer CA, Slater PR (2005) Atomic scale investigation of defects, dopants, and lithium transport in the LiFePO4 olivine-type battery material. Chem Mater 17:5085–5092CrossRef Islam MS, Driscoll DJ, Fischer CA, Slater PR (2005) Atomic scale investigation of defects, dopants, and lithium transport in the LiFePO4 olivine-type battery material. Chem Mater 17:5085–5092CrossRef
76.
go back to reference Chen G, Song X, Richardson TJ (2007) Metastable solid-solution phases in the LiFePO4/FePO4 system. J Electrochem Soc 154:A627–A632CrossRef Chen G, Song X, Richardson TJ (2007) Metastable solid-solution phases in the LiFePO4/FePO4 system. J Electrochem Soc 154:A627–A632CrossRef
77.
go back to reference Chen G, Song X, Richardson TJ (2006) Electron microscopy study of the LiFePO4 to FePO4 phase transition. J Electrochem Solid State Lett 9:A295–A298CrossRef Chen G, Song X, Richardson TJ (2006) Electron microscopy study of the LiFePO4 to FePO4 phase transition. J Electrochem Solid State Lett 9:A295–A298CrossRef
78.
go back to reference Laffont L, Delacourt C, Gibot P, Wu MY, Kooyman P, Masquelier C, Tarascon JM (2006) Study of the LiFePO4/FePO4 two-phase system by high-resolution electron energy loss spectroscopy. Chem Mater 18:5520–5529CrossRef Laffont L, Delacourt C, Gibot P, Wu MY, Kooyman P, Masquelier C, Tarascon JM (2006) Study of the LiFePO4/FePO4 two-phase system by high-resolution electron energy loss spectroscopy. Chem Mater 18:5520–5529CrossRef
79.
go back to reference Dokko K, Koizumi S, Nakano H, Kanamura K (2007) Particle morphology, crystal orientation, and electrochemical reactivity of LiFePO4 synthesized by the hydrothermal method at 443 K. J Mater Chem 17:4803–4810CrossRef Dokko K, Koizumi S, Nakano H, Kanamura K (2007) Particle morphology, crystal orientation, and electrochemical reactivity of LiFePO4 synthesized by the hydrothermal method at 443 K. J Mater Chem 17:4803–4810CrossRef
80.
go back to reference Zaghib K, Dontigny M, Charest P, Labrecque JF, Guerfi A, Kopec M, Mauger A, Gendron F, Julien CM (2010) LiFePO4: from molten ingot to nanoparticles with high-rate performance in Li-ion batteries. J Power Sourc 195:8280–8288CrossRef Zaghib K, Dontigny M, Charest P, Labrecque JF, Guerfi A, Kopec M, Mauger A, Gendron F, Julien CM (2010) LiFePO4: from molten ingot to nanoparticles with high-rate performance in Li-ion batteries. J Power Sourc 195:8280–8288CrossRef
81.
go back to reference Ait-Salah A, Mauger A, Zaghib K, Goodenough JB, Ravet N, Gauthier M, Gendron F, Julien CM (2006) Reduction of Fe3+ impurities in LiFePO4 from the pyrolysis of organic precursor used for carbon deposition. J Electrochem Soc 153:A1692–A1701CrossRef Ait-Salah A, Mauger A, Zaghib K, Goodenough JB, Ravet N, Gauthier M, Gendron F, Julien CM (2006) Reduction of Fe3+ impurities in LiFePO4 from the pyrolysis of organic precursor used for carbon deposition. J Electrochem Soc 153:A1692–A1701CrossRef
82.
go back to reference Prosini PP, Carewska M, Scaccia S, Wisniewski P, Passerini S, Pasquali M (2002) A new synthetic route for preparing LiFePO4 with enhanced electrochemical performance. J Electrochem Soc 149:A886–A890CrossRef Prosini PP, Carewska M, Scaccia S, Wisniewski P, Passerini S, Pasquali M (2002) A new synthetic route for preparing LiFePO4 with enhanced electrochemical performance. J Electrochem Soc 149:A886–A890CrossRef
83.
go back to reference Arcon D, Zorko A, Dominko R, Jaglicic Z (2004) A comparative studies of magnetic properties of LiFePO4 and LiMnPO4. J Phys C Condens Matter 16:5531–5548CrossRef Arcon D, Zorko A, Dominko R, Jaglicic Z (2004) A comparative studies of magnetic properties of LiFePO4 and LiMnPO4. J Phys C Condens Matter 16:5531–5548CrossRef
84.
go back to reference Geller S, Durand JL (1960) Refinement of the structure of LiMnPO4. Acta Crystallogr 13:325–329CrossRef Geller S, Durand JL (1960) Refinement of the structure of LiMnPO4. Acta Crystallogr 13:325–329CrossRef
85.
go back to reference Santorro RP, Newnham RE (1987) Antiferromagnetism in LiFePO4. Acta Crystallogr 22:344–347CrossRef Santorro RP, Newnham RE (1987) Antiferromagnetism in LiFePO4. Acta Crystallogr 22:344–347CrossRef
86.
go back to reference Streltsov VA, Belokoneva EL, Tsirelson VG, Hansen NK (1993) Multipole analysis of the electron density in triphylite LiFePO4 using X-ray diffraction data. Acta Crystallogr B 49:147–153CrossRef Streltsov VA, Belokoneva EL, Tsirelson VG, Hansen NK (1993) Multipole analysis of the electron density in triphylite LiFePO4 using X-ray diffraction data. Acta Crystallogr B 49:147–153CrossRef
87.
go back to reference Rousse G, Rodriguez-Carvajal J, Patoux S, Masquelier C (2003) Magnetic structures of the triphylite LiFePO4 and its delithiated form FePO4. Chem Mater 15:4082–4090CrossRef Rousse G, Rodriguez-Carvajal J, Patoux S, Masquelier C (2003) Magnetic structures of the triphylite LiFePO4 and its delithiated form FePO4. Chem Mater 15:4082–4090CrossRef
88.
go back to reference Losey A, Rakovan J, Huges J, Francis CA, Dyar MD (2004) Structural variation in the lithiophilite-triphylite series and other olivine-group structures. Canad Mineral 42:1105–1109CrossRef Losey A, Rakovan J, Huges J, Francis CA, Dyar MD (2004) Structural variation in the lithiophilite-triphylite series and other olivine-group structures. Canad Mineral 42:1105–1109CrossRef
89.
go back to reference Junod A, Wang KQ, Triscone G, Lamarche G (1995) Specific heat, magnetic properties and critical bahaviour of Mn2SiS4 and Fe2GeS4. J Magn Magn Mater 146:21–29CrossRef Junod A, Wang KQ, Triscone G, Lamarche G (1995) Specific heat, magnetic properties and critical bahaviour of Mn2SiS4 and Fe2GeS4. J Magn Magn Mater 146:21–29CrossRef
90.
go back to reference Moring J, Kostiner E (1986) The crystal structure of NaMnPO4. J Solid State Chem 61:379–383CrossRef Moring J, Kostiner E (1986) The crystal structure of NaMnPO4. J Solid State Chem 61:379–383CrossRef
91.
go back to reference Nakamura T, Miwa Y, Tabuchi M, Yamada Y (2006) Structural and surface modifications of LiFePO4 olivine particles and their electrochemical properties. J Electrochem Soc 153:1108CrossRef Nakamura T, Miwa Y, Tabuchi M, Yamada Y (2006) Structural and surface modifications of LiFePO4 olivine particles and their electrochemical properties. J Electrochem Soc 153:1108CrossRef
92.
go back to reference Andersson AS, Thomas JO (2001) The source of first-cycle capacity loss in LiFePO4. J Power Sourc 97–98:498–502CrossRef Andersson AS, Thomas JO (2001) The source of first-cycle capacity loss in LiFePO4. J Power Sourc 97–98:498–502CrossRef
93.
go back to reference Nyten A, Thomas JO (2006) A neutron powder diffraction study of LiCoxFe1-xPO4 for x = 0, 0.25, 0.40, 0.60 and 0.75. Solid State Ionics 177:1327–1330CrossRef Nyten A, Thomas JO (2006) A neutron powder diffraction study of LiCoxFe1-xPO4 for x = 0, 0.25, 0.40, 0.60 and 0.75. Solid State Ionics 177:1327–1330CrossRef
94.
go back to reference Beale AM, Sankar G (2002) Following the structural changes in iron phosphate catalysts by in situ combined XRD/QuEXAFS technique. J Mater Chem 12:3064–3072CrossRef Beale AM, Sankar G (2002) Following the structural changes in iron phosphate catalysts by in situ combined XRD/QuEXAFS technique. J Mater Chem 12:3064–3072CrossRef
95.
go back to reference Nanjundaswamy KS, Padhi AK, Goodenough JB, Okada S, Ohtsuka H, Arai H, Yamaki J (1996) Synthesis, redox potential evaluation and electrochemical characteristics of NASICON-related-3D framework compounds. Solid State Ionics 92:1–10CrossRef Nanjundaswamy KS, Padhi AK, Goodenough JB, Okada S, Ohtsuka H, Arai H, Yamaki J (1996) Synthesis, redox potential evaluation and electrochemical characteristics of NASICON-related-3D framework compounds. Solid State Ionics 92:1–10CrossRef
96.
go back to reference Pahdi AK, Manivannan M, Goodenough JB (1998) Tuning the position of the redox couples in materials with NASICON structure by anionic substitution. J Electrochem Soc 145:1518–1520CrossRef Pahdi AK, Manivannan M, Goodenough JB (1998) Tuning the position of the redox couples in materials with NASICON structure by anionic substitution. J Electrochem Soc 145:1518–1520CrossRef
97.
go back to reference Manthiram A, Goodenough JB (1989) Lithium insertion into Fe2(SO4)3 frameworks. J Power Sourc 26:403–408CrossRef Manthiram A, Goodenough JB (1989) Lithium insertion into Fe2(SO4)3 frameworks. J Power Sourc 26:403–408CrossRef
98.
go back to reference Nyten A, Abouimrane A, Armand M, Gustafsson T, Thomas JO (2005) Electrochemical performance of Li2FeSiO4 as a new Li-battery cathode material. Electrochem Commun 7:156–160CrossRef Nyten A, Abouimrane A, Armand M, Gustafsson T, Thomas JO (2005) Electrochemical performance of Li2FeSiO4 as a new Li-battery cathode material. Electrochem Commun 7:156–160CrossRef
99.
go back to reference Barker J, Saidi MY, Swoyer JL (2003) Electrochemical insertion properties of the novel lithium vanadium fluorophosphate, LiVPO4F. J Electrochem Soc 150:A1394–A1398CrossRef Barker J, Saidi MY, Swoyer JL (2003) Electrochemical insertion properties of the novel lithium vanadium fluorophosphate, LiVPO4F. J Electrochem Soc 150:A1394–A1398CrossRef
100.
go back to reference Armand M, Gauthier M, Magnan JF, Ravet (2002) Method for synthesis of carbon-coated redox materials with controlled size. Word Patent 02/27823 A1 Armand M, Gauthier M, Magnan JF, Ravet (2002) Method for synthesis of carbon-coated redox materials with controlled size. Word Patent 02/27823 A1
101.
go back to reference Zaghib K, Armand M Guerfi A, Perrier M, Dupuis E (2004) Electrode covered with a film obtained from an aqueous solution containing a water soluble binder, manufacturing process and usesthereof. Canadian Patent CA 2,411,695, 13 May 2004 Zaghib K, Armand M Guerfi A, Perrier M, Dupuis E (2004) Electrode covered with a film obtained from an aqueous solution containing a water soluble binder, manufacturing process and usesthereof. Canadian Patent CA 2,411,695, 13 May 2004
102.
go back to reference Striebel K, Shim J, Srinivasan V, Newman J (2005) Comparison of LiFePO4 from different sources. J Electrochem Soc 152:A664–A670CrossRef Striebel K, Shim J, Srinivasan V, Newman J (2005) Comparison of LiFePO4 from different sources. J Electrochem Soc 152:A664–A670CrossRef
103.
go back to reference Paques-Ledent MT, Tarte P (1974) Vibrational studies of olivine-type compounds – II orthophosphates, -arsenates and -vanadates AIBIIXVO4. Spectrochim Acta Part A 30:673–689CrossRef Paques-Ledent MT, Tarte P (1974) Vibrational studies of olivine-type compounds – II orthophosphates, -arsenates and -vanadates AIBIIXVO4. Spectrochim Acta Part A 30:673–689CrossRef
104.
go back to reference Burma CM, Frech R (2004) Raman and FTIR spectroscopic study of LixFePO4 (0 ≤ x ≤ 1). J Electrochem Soc 151:A1032–A1038CrossRef Burma CM, Frech R (2004) Raman and FTIR spectroscopic study of LixFePO4 (0 ≤ x ≤ 1). J Electrochem Soc 151:A1032–A1038CrossRef
105.
go back to reference Kostecki R, Schnyder B, Alliata D, Song X, Kinoshita K, Kotz R (2001) Surface studies of carbon films from pyrolyzed photoresist. Thin Solid Films 396:36–43CrossRef Kostecki R, Schnyder B, Alliata D, Song X, Kinoshita K, Kotz R (2001) Surface studies of carbon films from pyrolyzed photoresist. Thin Solid Films 396:36–43CrossRef
106.
go back to reference Julien CM, Massot M (2004) Structure of electrode materials for Li-ion batteries: the Raman spectroscopy investigations. In: Vladikova D, Stoynov Z (eds) Portable and emergency energy sources. Academic, Waltham, MA, pp 37–70 Julien CM, Massot M (2004) Structure of electrode materials for Li-ion batteries: the Raman spectroscopy investigations. In: Vladikova D, Stoynov Z (eds) Portable and emergency energy sources. Academic, Waltham, MA, pp 37–70
107.
go back to reference Burba CM, Frech R (2006) In situ transmission FTIR spectroelectrochemistry: a new technique for studying lithium batteries. Electrochem Acta 52:780–785CrossRef Burba CM, Frech R (2006) In situ transmission FTIR spectroelectrochemistry: a new technique for studying lithium batteries. Electrochem Acta 52:780–785CrossRef
108.
go back to reference Ait-Salah A, Jozwiak P, Zaghib K, Garbarczyk J, Gendron F, Mauger A, Julien CM (2006) Spectrochim Acta A 65:1007–1013CrossRef Ait-Salah A, Jozwiak P, Zaghib K, Garbarczyk J, Gendron F, Mauger A, Julien CM (2006) Spectrochim Acta A 65:1007–1013CrossRef
109.
go back to reference Julien CM, Ait-Salah A, Gendron F, Morhange JF, Mauger A, Ramana CV (2006) Microstructure of LiXPO4 (X = Ni, Co, Mn) prepared by solid-state chemical reaction. Scripta Mater 55:1179–1182CrossRef Julien CM, Ait-Salah A, Gendron F, Morhange JF, Mauger A, Ramana CV (2006) Microstructure of LiXPO4 (X = Ni, Co, Mn) prepared by solid-state chemical reaction. Scripta Mater 55:1179–1182CrossRef
110.
go back to reference Santorro RP, Newnham RE, Nomura S (1966) Magnetic properties of Mn2SiO4 and Fe2SiO4. J Phys Chem Solids 27:655–666CrossRef Santorro RP, Newnham RE, Nomura S (1966) Magnetic properties of Mn2SiO4 and Fe2SiO4. J Phys Chem Solids 27:655–666CrossRef
111.
go back to reference Santoro RP, Segal DJ, Newnham RE (1966) Magnetic properties of LiCoPO4 and LiNiPO4. J Phys Chem Solids 27:1192–1193CrossRef Santoro RP, Segal DJ, Newnham RE (1966) Magnetic properties of LiCoPO4 and LiNiPO4. J Phys Chem Solids 27:1192–1193CrossRef
112.
go back to reference Dai D, Koo HJ, Rocquefelte X, Jobic S (2005) Analysis of the spin exchange interactions and the ordered magnetic structures of lithium transition metal phosphates LiMPO4 (M = Mn, Fe, Co, Ni) with the olivine structure. Inorg Chem 44:2407–2413CrossRef Dai D, Koo HJ, Rocquefelte X, Jobic S (2005) Analysis of the spin exchange interactions and the ordered magnetic structures of lithium transition metal phosphates LiMPO4 (M = Mn, Fe, Co, Ni) with the olivine structure. Inorg Chem 44:2407–2413CrossRef
113.
go back to reference Mays JM (1963) Nuclear magnetic resonances and Mn-O-P-O-Mn superexchange linkages in paramagnetic and antiferrmagnetic LiMnPO4. Phys Rev 131:38–53CrossRef Mays JM (1963) Nuclear magnetic resonances and Mn-O-P-O-Mn superexchange linkages in paramagnetic and antiferrmagnetic LiMnPO4. Phys Rev 131:38–53CrossRef
114.
go back to reference Zaghib K, Ravet N, Gauthier M, Gendron F, Mauger A, Goodenough JB, Julien CM (2006) Optimized electrochemical performance of LiFePO4 at 60 °C with purity controlled by SQUID magnetometry. J Power Sourc 163:560–566CrossRef Zaghib K, Ravet N, Gauthier M, Gendron F, Mauger A, Goodenough JB, Julien CM (2006) Optimized electrochemical performance of LiFePO4 at 60 °C with purity controlled by SQUID magnetometry. J Power Sourc 163:560–566CrossRef
115.
go back to reference Julien CM, Zaghib K, Mauger A, Groult H (2012) Enhanced electrochemical properties of LiFePO4 as positive electrode of Li-ion batteries for HEV application. Adv Chem Eng and Sci 2:321–329CrossRef Julien CM, Zaghib K, Mauger A, Groult H (2012) Enhanced electrochemical properties of LiFePO4 as positive electrode of Li-ion batteries for HEV application. Adv Chem Eng and Sci 2:321–329CrossRef
116.
go back to reference Mott NF (1968) Conduction in glasses containing transition metal ion. J Non-Cryst Solids 1:1–17CrossRef Mott NF (1968) Conduction in glasses containing transition metal ion. J Non-Cryst Solids 1:1–17CrossRef
117.
go back to reference Zaghib K, Mauger A, Goodenough JB, Gendron F, Julien CM (2007) Electronic, optical, and magnetic properties of LiFePO4: small magnetic polaron effects. Chem Mater 19:3740–3747CrossRef Zaghib K, Mauger A, Goodenough JB, Gendron F, Julien CM (2007) Electronic, optical, and magnetic properties of LiFePO4: small magnetic polaron effects. Chem Mater 19:3740–3747CrossRef
118.
go back to reference Zhou F, Kang K, Maxisch T, Ceder G, Morgan D (2004) The electronic structure and band gap of LiFePO4 and LiMnPO4. Solid State Commun 132:181–186CrossRef Zhou F, Kang K, Maxisch T, Ceder G, Morgan D (2004) The electronic structure and band gap of LiFePO4 and LiMnPO4. Solid State Commun 132:181–186CrossRef
119.
go back to reference Mauger A, Godart C (1986) The magnetic, optical and transport properties of representatives of a class of magnetic semiconductors: the europium chalcogenides. Phys Reports 141:51–176CrossRef Mauger A, Godart C (1986) The magnetic, optical and transport properties of representatives of a class of magnetic semiconductors: the europium chalcogenides. Phys Reports 141:51–176CrossRef
120.
go back to reference Mauger A, Godart C (1980) Metal-insulator transition in Eu rich EuO. Solid State Commun 35:785–788CrossRef Mauger A, Godart C (1980) Metal-insulator transition in Eu rich EuO. Solid State Commun 35:785–788CrossRef
121.
go back to reference Wilcox JW, Doeff MM, Marcinek M, Kostecki R (2007) Factors influencing the quality of carbon coatings on LiFePO4. J Electrochem Soc 154:A389–A395CrossRef Wilcox JW, Doeff MM, Marcinek M, Kostecki R (2007) Factors influencing the quality of carbon coatings on LiFePO4. J Electrochem Soc 154:A389–A395CrossRef
122.
go back to reference Doeff MM, Hu Y, McLarnon F, Kostecki R (2003) Effect of surface carbon structure on the electrochemical performance of LiFePO4. Electrochem Solid State Lett 6:A207–A209CrossRef Doeff MM, Hu Y, McLarnon F, Kostecki R (2003) Effect of surface carbon structure on the electrochemical performance of LiFePO4. Electrochem Solid State Lett 6:A207–A209CrossRef
123.
go back to reference Geis MW, Tamor MA (1993) Diamond and diamondlike carbon. In: Trigg GL (ed) The encyclopedia of applied physics, vol 5. VCH, New York, NY, p 1 Geis MW, Tamor MA (1993) Diamond and diamondlike carbon. In: Trigg GL (ed) The encyclopedia of applied physics, vol 5. VCH, New York, NY, p 1
124.
go back to reference Robertson J (1992) Properties of diamond-like carbon. Surf Coatings Technol 50:185–203CrossRef Robertson J (1992) Properties of diamond-like carbon. Surf Coatings Technol 50:185–203CrossRef
125.
go back to reference Ramsteiner M, Wagner J (1987) Resonant Raman scattering of hydrogenated amorphous carbon: evidence for π-bonded carbon clusters. Appl Phys Lett 51:1355–1357CrossRef Ramsteiner M, Wagner J (1987) Resonant Raman scattering of hydrogenated amorphous carbon: evidence for π-bonded carbon clusters. Appl Phys Lett 51:1355–1357CrossRef
126.
go back to reference Yoshikawa M, Katagani G, Ishida H, Ishitami A, Akamatsu T (1988) Resonant Raman scattering of diamondlike amorphous carbon films. Appl Phys Lett 52:1639–1641CrossRef Yoshikawa M, Katagani G, Ishida H, Ishitami A, Akamatsu T (1988) Resonant Raman scattering of diamondlike amorphous carbon films. Appl Phys Lett 52:1639–1641CrossRef
127.
go back to reference Tamor MA, Vassell WC (1994) Raman fingerprinting of amorphous carbon films. J Appl Phys 76:3823–3830CrossRef Tamor MA, Vassell WC (1994) Raman fingerprinting of amorphous carbon films. J Appl Phys 76:3823–3830CrossRef
128.
go back to reference Wada N, Gaczi PJ, Solin SA (1980) Diamond-like 3-fold coordinated amorphous carbon. J Non-Cryst Solids 35–36:543–548CrossRef Wada N, Gaczi PJ, Solin SA (1980) Diamond-like 3-fold coordinated amorphous carbon. J Non-Cryst Solids 35–36:543–548CrossRef
129.
go back to reference Lespade P, Marchand A, Cousi M, Cruege F (1984) Caractérisation de matériaux carbonés par microspectrométrie Raman. Carbon 22:375–385CrossRef Lespade P, Marchand A, Cousi M, Cruege F (1984) Caractérisation de matériaux carbonés par microspectrométrie Raman. Carbon 22:375–385CrossRef
130.
go back to reference Knight DS, White WB (1989) Characterization of diamond films by Raman spectroscopy. J Mater Res 4:385–393CrossRef Knight DS, White WB (1989) Characterization of diamond films by Raman spectroscopy. J Mater Res 4:385–393CrossRef
131.
go back to reference Nakamizo M, Tamai K (1984) Raman spectra of the oxidized and polished surfaces of carbon. Carbon 22:197–198CrossRef Nakamizo M, Tamai K (1984) Raman spectra of the oxidized and polished surfaces of carbon. Carbon 22:197–198CrossRef
132.
go back to reference Matthews MJ, Bi XX, Dresselhaus MS, Endo M, Takahashi T (1996) Raman spectra of polyparaphenylene-based carbon prepared at low heat-treatment temperatures. Appl Phys Lett 68:1078–1080CrossRef Matthews MJ, Bi XX, Dresselhaus MS, Endo M, Takahashi T (1996) Raman spectra of polyparaphenylene-based carbon prepared at low heat-treatment temperatures. Appl Phys Lett 68:1078–1080CrossRef
133.
go back to reference Robertson J, O’Reilly EP (1987) Electronic and atomic structure of amorphous carbon. Phys Rev B 35:2946–2957CrossRef Robertson J, O’Reilly EP (1987) Electronic and atomic structure of amorphous carbon. Phys Rev B 35:2946–2957CrossRef
134.
go back to reference Axmann P, Stinner C, Wohlfahrt-Mehrens M, Mauger A, Gendron F, Julien CM (2009) Non-stoichiometric LiFePO4: defects and related properties. Chem Mater 21:1636–1644CrossRef Axmann P, Stinner C, Wohlfahrt-Mehrens M, Mauger A, Gendron F, Julien CM (2009) Non-stoichiometric LiFePO4: defects and related properties. Chem Mater 21:1636–1644CrossRef
135.
go back to reference Chen J, Whittingham MS (2006) Hydrothermal synthesis of lithium iron phosphate. Electrochem Commun 6:855–858CrossRef Chen J, Whittingham MS (2006) Hydrothermal synthesis of lithium iron phosphate. Electrochem Commun 6:855–858CrossRef
136.
go back to reference Yang S, Song Y, Zavalij PY, Whittingham MS (2002) Reactivity, stability and electrochemical behavior of lithium iron phosphates. Electrochem Commun 4:239–244 Yang S, Song Y, Zavalij PY, Whittingham MS (2002) Reactivity, stability and electrochemical behavior of lithium iron phosphates. Electrochem Commun 4:239–244
137.
go back to reference Yamada A, Koizumi H, Sonoyma N, Kanno R (2005) Phase change in LixFePO4. Electrochem Solid State Lett 5:A409–A413CrossRef Yamada A, Koizumi H, Sonoyma N, Kanno R (2005) Phase change in LixFePO4. Electrochem Solid State Lett 5:A409–A413CrossRef
138.
go back to reference Xie J, Oudenhoven FM, Harks PRML, Li D, Notten PHL (2015) Chemical vapor deposition of lithium phosphate thin-films for 3D all-solid-state Li-ion batteries. J Electro Chem 162:A249–A254CrossRef Xie J, Oudenhoven FM, Harks PRML, Li D, Notten PHL (2015) Chemical vapor deposition of lithium phosphate thin-films for 3D all-solid-state Li-ion batteries. J Electro Chem 162:A249–A254CrossRef
139.
go back to reference Zaghib K, Dontigny M, Charest P, Labrecque JF, Guerfi A, Kopec M, Mauger A, Gendron F, Julien CM (2008) Aging of LiFePO4 upon exposure to H2O. J Power Sourc 185:698–710CrossRef Zaghib K, Dontigny M, Charest P, Labrecque JF, Guerfi A, Kopec M, Mauger A, Gendron F, Julien CM (2008) Aging of LiFePO4 upon exposure to H2O. J Power Sourc 185:698–710CrossRef
140.
go back to reference Porcher W, Moreau P, Lestriez B, Jouanneau S, Guyomard D (2008) Is LiFePO4 stable in water? Toward greener Li-ion batteries. Electrochem Solid State Lett 11:A4–A8CrossRef Porcher W, Moreau P, Lestriez B, Jouanneau S, Guyomard D (2008) Is LiFePO4 stable in water? Toward greener Li-ion batteries. Electrochem Solid State Lett 11:A4–A8CrossRef
141.
go back to reference Trudeau ML, Laul D, Veillette R, Serventi AM, Zaghib K, Mauger A, Julien CM (2011) In situ high-resolution transmission electron microscopy synthesis observation of nanostructured LiFePO4. J Power Sourc 196:7383–7394CrossRef Trudeau ML, Laul D, Veillette R, Serventi AM, Zaghib K, Mauger A, Julien CM (2011) In situ high-resolution transmission electron microscopy synthesis observation of nanostructured LiFePO4. J Power Sourc 196:7383–7394CrossRef
142.
go back to reference Zaghib K, Ravet N, Mauger A, Gauthier M, Goodenough JB, Julien CM (2007) LiFePO4 high electrochemical performance at 60 °C with purity controlled by SQUID magnetometry. ECS Trans 3–27:119–129CrossRef Zaghib K, Ravet N, Mauger A, Gauthier M, Goodenough JB, Julien CM (2007) LiFePO4 high electrochemical performance at 60 °C with purity controlled by SQUID magnetometry. ECS Trans 3–27:119–129CrossRef
143.
go back to reference Zaghib K, Dontigny M, Guerfy A, Trottier J, Hamel-Paquet J, Gariepy V, Galoutov K, Hovington P, Mauger A, Groult H, Julien CM (2012) J Power Sourc 216:192–200CrossRef Zaghib K, Dontigny M, Guerfy A, Trottier J, Hamel-Paquet J, Gariepy V, Galoutov K, Hovington P, Mauger A, Groult H, Julien CM (2012) J Power Sourc 216:192–200CrossRef
144.
go back to reference Choi D, Wan D, Bae LT, Xiao J, Nie Z, Wang W, Viswanathan VV, Lee YJ, Zhang JG, Graff GL, Yang Z, Liu J (2010) LiMnPO4 nanoplate grown via solid-state reaction in molten hydrocarbon for Li-ion battery cathode. Nano Lett 10:2799–2805CrossRef Choi D, Wan D, Bae LT, Xiao J, Nie Z, Wang W, Viswanathan VV, Lee YJ, Zhang JG, Graff GL, Yang Z, Liu J (2010) LiMnPO4 nanoplate grown via solid-state reaction in molten hydrocarbon for Li-ion battery cathode. Nano Lett 10:2799–2805CrossRef
145.
go back to reference Oh SM, Oh SW, Yoon CS, Scrosati B, Amine K, Sun YK (2010) High-performance carbon-LiMnPO4 nanocomposite cathode for lithium batteries. Adv Funct Mater 20:3260–3265CrossRef Oh SM, Oh SW, Yoon CS, Scrosati B, Amine K, Sun YK (2010) High-performance carbon-LiMnPO4 nanocomposite cathode for lithium batteries. Adv Funct Mater 20:3260–3265CrossRef
146.
go back to reference Wang D, Buqa H, Crouzet M, Deghenghi G, Drezen T, Exnar I, Kwon N-H, Miners JH, Poletto L, Grätzel M (2009) High-performance, nano-structured LiMnPO4 synthesized via a polyol method. J Power Sourc 189:624–628CrossRef Wang D, Buqa H, Crouzet M, Deghenghi G, Drezen T, Exnar I, Kwon N-H, Miners JH, Poletto L, Grätzel M (2009) High-performance, nano-structured LiMnPO4 synthesized via a polyol method. J Power Sourc 189:624–628CrossRef
147.
go back to reference Martha K, Markovski B, Grinblat J, Gofer Y, Haik O, Zinigrad E, Aurbach D, Drezen T, Wang D, Deghenghi G, Exnar I (2009) LiMnPO4 as an advanced cathode material for rechargeable lithium batteries. J Electochem Soc 156:A541–A552CrossRef Martha K, Markovski B, Grinblat J, Gofer Y, Haik O, Zinigrad E, Aurbach D, Drezen T, Wang D, Deghenghi G, Exnar I (2009) LiMnPO4 as an advanced cathode material for rechargeable lithium batteries. J Electochem Soc 156:A541–A552CrossRef
148.
go back to reference Kuroda S, Tobori N, Sakuraba M, Sato Y (2003) Charge–discharge properties of a cathode prepared with ketjen black as the electroconductive additive in lithium ion batteries. J Power Sourc 119–121:924–928CrossRef Kuroda S, Tobori N, Sakuraba M, Sato Y (2003) Charge–discharge properties of a cathode prepared with ketjen black as the electroconductive additive in lithium ion batteries. J Power Sourc 119–121:924–928CrossRef
149.
go back to reference Xing W, Qiao SZ, Ding RG, Li F, Lu GQ, Yan ZF, Cheng HM (2006) Superior electric double layer capacitors using ordered mesoporous carbons. Carbon 44:216–224CrossRef Xing W, Qiao SZ, Ding RG, Li F, Lu GQ, Yan ZF, Cheng HM (2006) Superior electric double layer capacitors using ordered mesoporous carbons. Carbon 44:216–224CrossRef
150.
go back to reference Bakenov Z, Taniguchi I (2010) LiMgxMn1-xPO4/C cathodes for lithium batteries prepared by a combination of spray pyrolysis with wet ball milling. J Electrochem Soc 157:430–436CrossRef Bakenov Z, Taniguchi I (2010) LiMgxMn1-xPO4/C cathodes for lithium batteries prepared by a combination of spray pyrolysis with wet ball milling. J Electrochem Soc 157:430–436CrossRef
151.
go back to reference Bakenov Z, Taniguchi I (2005) Electrochemical performance of nanostructured LiMxMn2-xO4 (M = Co and Al) powders at high charge–discharge operations. Solid State Ionics 176:1027–1034CrossRef Bakenov Z, Taniguchi I (2005) Electrochemical performance of nanostructured LiMxMn2-xO4 (M = Co and Al) powders at high charge–discharge operations. Solid State Ionics 176:1027–1034CrossRef
152.
go back to reference Oh SM, Jung HG, Yoon CS, Myung ST, Chen ZH, Amine K, Sun YK (2011) Enhanced electrochemical performance of carbon-LiMn1-xFexPO4 nanocomposite cathode for lithium-ion batteries. J Power Sourc 196:6924–6928CrossRef Oh SM, Jung HG, Yoon CS, Myung ST, Chen ZH, Amine K, Sun YK (2011) Enhanced electrochemical performance of carbon-LiMn1-xFexPO4 nanocomposite cathode for lithium-ion batteries. J Power Sourc 196:6924–6928CrossRef
153.
go back to reference Oh SM, Oh SW, Myung ST, Lee SM, Sun YK (2010) The effects of calcination temperature on the electrochemical performance of LiMnPO4 prepared by ultrasonic spray pyrolysis. J Alloy Compd 506:372–376CrossRef Oh SM, Oh SW, Myung ST, Lee SM, Sun YK (2010) The effects of calcination temperature on the electrochemical performance of LiMnPO4 prepared by ultrasonic spray pyrolysis. J Alloy Compd 506:372–376CrossRef
154.
go back to reference Yamada A, Chung S-C (2001) Crystal chemistry of the olivine-type LiMnyFe1-yPO4 and MnyFe1-yPO4 as possible 4 V cathode materials for lithium batteries. J Electrochem Soc 148:A960–A967CrossRef Yamada A, Chung S-C (2001) Crystal chemistry of the olivine-type LiMnyFe1-yPO4 and MnyFe1-yPO4 as possible 4 V cathode materials for lithium batteries. J Electrochem Soc 148:A960–A967CrossRef
155.
go back to reference Nakamura T, Sakumoto K, Okamoto M, Seki S, Kobayashi Y, Takeuchi T, Tabuchi M, Yamada Y (2007) Electrochemical study on Mn2+-substitution in LiFePO4 olivine compound. J Power Sourc 174:435–441CrossRef Nakamura T, Sakumoto K, Okamoto M, Seki S, Kobayashi Y, Takeuchi T, Tabuchi M, Yamada Y (2007) Electrochemical study on Mn2+-substitution in LiFePO4 olivine compound. J Power Sourc 174:435–441CrossRef
156.
go back to reference Molenda J, Ojczyk W, Marzec J (2007) Electrical conductivity and reaction with lithium of LiFe1-yMnyPO4 olivine-type cathode materials. J Power Sourc 174:689–694CrossRef Molenda J, Ojczyk W, Marzec J (2007) Electrical conductivity and reaction with lithium of LiFe1-yMnyPO4 olivine-type cathode materials. J Power Sourc 174:689–694CrossRef
157.
go back to reference Kopec M, Yamada A, Kobayashi G, Nishimura S, Kanno R, Mauger A, Gendron F, Julien CM (2009) Structural and magnetic properties of LixMnyFe1-yPO4 electrode materials for Li-ion batteries. J Power Sourc 189:1154–1163CrossRef Kopec M, Yamada A, Kobayashi G, Nishimura S, Kanno R, Mauger A, Gendron F, Julien CM (2009) Structural and magnetic properties of LixMnyFe1-yPO4 electrode materials for Li-ion batteries. J Power Sourc 189:1154–1163CrossRef
158.
go back to reference Bramnik NN, Bramnik KG, Nikolowski K, Hinterstein M, Baehtz C, Ehrenberg H (2005) Synchrotron diffraction study of lithium extraction from LiMn0.6Fe0.4PO4. Electrochem Solid State Lett 8:A379–A381CrossRef Bramnik NN, Bramnik KG, Nikolowski K, Hinterstein M, Baehtz C, Ehrenberg H (2005) Synchrotron diffraction study of lithium extraction from LiMn0.6Fe0.4PO4. Electrochem Solid State Lett 8:A379–A381CrossRef
159.
go back to reference Bini M, Mozzati MC, Galinetto P, Capsoni D, Ferrari S, Grandi MS, Massarotti V (2009) Structural, spectroscopic and magnetic investigation of the LiFe1-xMnxPO4 (0 ≤ x ≤ 1) solid solution. J Solid State Chem 182:1972–1981CrossRef Bini M, Mozzati MC, Galinetto P, Capsoni D, Ferrari S, Grandi MS, Massarotti V (2009) Structural, spectroscopic and magnetic investigation of the LiFe1-xMnxPO4 (0 ≤ x ≤ 1) solid solution. J Solid State Chem 182:1972–1981CrossRef
160.
go back to reference Yoncheva M, Koleva V, Mladenov M, Sendova-Vassileva M, Nikolaeva-Dimitrova M, Stoyanova R, Zhecheva E (2011) Carbon-coated nano-sized LiFe1-xMnxPO4 solid solutions (0 ≤ x ≤ 1) obtained from phosphate–formate precursors. J Mater Sci 46:7082–7089CrossRef Yoncheva M, Koleva V, Mladenov M, Sendova-Vassileva M, Nikolaeva-Dimitrova M, Stoyanova R, Zhecheva E (2011) Carbon-coated nano-sized LiFe1-xMnxPO4 solid solutions (0 ≤ x ≤ 1) obtained from phosphate–formate precursors. J Mater Sci 46:7082–7089CrossRef
161.
go back to reference Zaghib K, Trudeau M, Guerfi A, Trottier J, Mauger A, Veillette R, Julien CM (2012) New advanced cathode material: LiMnPO4 encapsulated with LiFePO4. J Power Sourc 204:177–181CrossRef Zaghib K, Trudeau M, Guerfi A, Trottier J, Mauger A, Veillette R, Julien CM (2012) New advanced cathode material: LiMnPO4 encapsulated with LiFePO4. J Power Sourc 204:177–181CrossRef
162.
go back to reference Kraytsberg A, Ein-Eli Y (2012) Higher, stronger, better. A review of 5 volt cathode materials for advanced lithium-ion batteries. Adv Energy Mater 2:922–939CrossRef Kraytsberg A, Ein-Eli Y (2012) Higher, stronger, better. A review of 5 volt cathode materials for advanced lithium-ion batteries. Adv Energy Mater 2:922–939CrossRef
163.
go back to reference Zaghib K, Mauger A, Goodenough JB, Gendron F, Julien CM (2009) Positive electrode: Lithium iron phosphate. In: Garche J (ed) Encyclopedia of electrochemical power sources, vol 5. Elsevier, Amsterdam, pp 264–296CrossRef Zaghib K, Mauger A, Goodenough JB, Gendron F, Julien CM (2009) Positive electrode: Lithium iron phosphate. In: Garche J (ed) Encyclopedia of electrochemical power sources, vol 5. Elsevier, Amsterdam, pp 264–296CrossRef
164.
go back to reference Zhu QB, Li XH, Wang ZW, Guo HJ (2006) Novel synthesis of LiFePO4 by aqueous precipitation and carbothermal reduction. Mater Chem Phys 98:373–376CrossRef Zhu QB, Li XH, Wang ZW, Guo HJ (2006) Novel synthesis of LiFePO4 by aqueous precipitation and carbothermal reduction. Mater Chem Phys 98:373–376CrossRef
165.
go back to reference Bramnik NN, Nikolowski K, Trots DM, Ehrenberg H (2008) Thermal stability of LiCoPO4 cathodes. Electrochem Solid State Lett 11:A89–A93CrossRef Bramnik NN, Nikolowski K, Trots DM, Ehrenberg H (2008) Thermal stability of LiCoPO4 cathodes. Electrochem Solid State Lett 11:A89–A93CrossRef
166.
go back to reference Wolfenstine J, Allen J (2005) Ni3+/Ni2+ redox potential in LiNiPO4. J Power Sourc 142:389–390CrossRef Wolfenstine J, Allen J (2005) Ni3+/Ni2+ redox potential in LiNiPO4. J Power Sourc 142:389–390CrossRef
167.
go back to reference Minakshi M, Sharma N, Ralph D, Appadoo D, Nallathamby K (2011) Synthesis and characterization of Li(Co0.5Ni0.5)PO4 cathode for Li-ion aqueous battery applications. Electrochem Solid State Lett 14:A86–A89CrossRef Minakshi M, Sharma N, Ralph D, Appadoo D, Nallathamby K (2011) Synthesis and characterization of Li(Co0.5Ni0.5)PO4 cathode for Li-ion aqueous battery applications. Electrochem Solid State Lett 14:A86–A89CrossRef
168.
go back to reference Bramnik NN, Bramnik KG, Baehtz C, Ehrenberg H (2005) Study of the effect of different synthesis routes on Li extraction–insertion from LiCoPO4. J Power Sourc 145:74–81CrossRef Bramnik NN, Bramnik KG, Baehtz C, Ehrenberg H (2005) Study of the effect of different synthesis routes on Li extraction–insertion from LiCoPO4. J Power Sourc 145:74–81CrossRef
169.
go back to reference Bramnik NN, Bramnik KG, Buhrmester T, Baehtz C, Ehrenberg H, Fuess H (2004) Electrochemical and structural study of LiCoPO4-based electrodes. J Solid State Electrochem 8:558–564CrossRef Bramnik NN, Bramnik KG, Buhrmester T, Baehtz C, Ehrenberg H, Fuess H (2004) Electrochemical and structural study of LiCoPO4-based electrodes. J Solid State Electrochem 8:558–564CrossRef
170.
go back to reference Nakayama M, Goto S, Uchimoto Y, Wakihara M, Kitayama Y (2004) Changes in electronic structure between cobalt and oxide ions of lithium cobalt phosphate as 4.8-V positive electrode material. Chem Mater 16:3399–3401CrossRef Nakayama M, Goto S, Uchimoto Y, Wakihara M, Kitayama Y (2004) Changes in electronic structure between cobalt and oxide ions of lithium cobalt phosphate as 4.8-V positive electrode material. Chem Mater 16:3399–3401CrossRef
171.
go back to reference Bramnik NN, Nikolowski K, Baehtz C, Bramnik KG, Ehrenberg H (2007) Phase transition occurring upon lithium insertion-extraction of LiCoPO4. Chem Mater 19:908–915CrossRef Bramnik NN, Nikolowski K, Baehtz C, Bramnik KG, Ehrenberg H (2007) Phase transition occurring upon lithium insertion-extraction of LiCoPO4. Chem Mater 19:908–915CrossRef
172.
go back to reference Okada S, Sawa S, Egashira M, Yamaki JI, Tabuchi M, Kageyama H, Konishi T, Yoshino A (2001) Cathode properties of phospho-olivine LiMPO4 for lithium secondary batteries. J Power Sourc 97–98:430–432CrossRef Okada S, Sawa S, Egashira M, Yamaki JI, Tabuchi M, Kageyama H, Konishi T, Yoshino A (2001) Cathode properties of phospho-olivine LiMPO4 for lithium secondary batteries. J Power Sourc 97–98:430–432CrossRef
173.
go back to reference Jang IC, Lim HH, Lee SB, Karthikeyan K, Aravindan V, Kang KS, Yoon WS, Cho WI, Lee YS (2010) Preparation of LiCoPO4 and LiFePO4 coated LiCoPO4 materials with improved battery performance. J Alloys Compd 497:321–324CrossRef Jang IC, Lim HH, Lee SB, Karthikeyan K, Aravindan V, Kang KS, Yoon WS, Cho WI, Lee YS (2010) Preparation of LiCoPO4 and LiFePO4 coated LiCoPO4 materials with improved battery performance. J Alloys Compd 497:321–324CrossRef
174.
go back to reference Rabanal ME, Gutierrez MC, Garcia-Alvarado F, Gonzalo EC, Arroyo-de Dompablo ME (2006) Improved electrode characteristics of olivine–LiCoPO4 processed by high energy milling. J Power Sourc 160:523–528CrossRef Rabanal ME, Gutierrez MC, Garcia-Alvarado F, Gonzalo EC, Arroyo-de Dompablo ME (2006) Improved electrode characteristics of olivine–LiCoPO4 processed by high energy milling. J Power Sourc 160:523–528CrossRef
175.
go back to reference Koleva V, Zhecheva E, Stoyanova R (2010) Ordered olivine-type lithium-cobalt and lithium-nickel phosphates prepared by a new precursor method. Eur J Inorg Chem 26:4091–4099CrossRef Koleva V, Zhecheva E, Stoyanova R (2010) Ordered olivine-type lithium-cobalt and lithium-nickel phosphates prepared by a new precursor method. Eur J Inorg Chem 26:4091–4099CrossRef
176.
go back to reference Kandhasamy S, Pandey A, Minakshi M (2012) Polyvinyl-pyrrolidone assisted sol-gel route LiCo1/3Mn1/3Ni1/3PO4 composite cathode for aqueous rechargeable battery. Electrochim Acta 60:170–176CrossRef Kandhasamy S, Pandey A, Minakshi M (2012) Polyvinyl-pyrrolidone assisted sol-gel route LiCo1/3Mn1/3Ni1/3PO4 composite cathode for aqueous rechargeable battery. Electrochim Acta 60:170–176CrossRef
177.
go back to reference Eftekhari A (2004) Surface modification of thin-film based LiCoPO4 5 V cathode with metal oxide. J Electrochem Soc 151:A1456–A1460CrossRef Eftekhari A (2004) Surface modification of thin-film based LiCoPO4 5 V cathode with metal oxide. J Electrochem Soc 151:A1456–A1460CrossRef
178.
go back to reference Deniard P, Dulac AM, Rocquefelte X, Grigorova V, Lebacq O, Pasturel A, Jobic S (2004) High potential positive materials for lithium-ion batteries: transition metal phosphates. J Phys Chem Solids 65:229–233CrossRef Deniard P, Dulac AM, Rocquefelte X, Grigorova V, Lebacq O, Pasturel A, Jobic S (2004) High potential positive materials for lithium-ion batteries: transition metal phosphates. J Phys Chem Solids 65:229–233CrossRef
179.
go back to reference Prabu M, Selvasekarapandian S, Kulkarni AR, Karthikeyan S, Hirankumar G, Sanjeeviraja C (2011) Structural, dielectric, and conductivity studies of yttrium-doped LiNiPO4 cathode materials. Ionics 17:201–207CrossRef Prabu M, Selvasekarapandian S, Kulkarni AR, Karthikeyan S, Hirankumar G, Sanjeeviraja C (2011) Structural, dielectric, and conductivity studies of yttrium-doped LiNiPO4 cathode materials. Ionics 17:201–207CrossRef
180.
go back to reference Karthickprabhu S, Hirankumar G, Maheswaran A, Sanjeeviraja C, Daries-Bella RS (2013) Structural and conductivity studies on LiNiPO4 synthesized by the polyol method. J Alloys Compd 548:65–69CrossRef Karthickprabhu S, Hirankumar G, Maheswaran A, Sanjeeviraja C, Daries-Bella RS (2013) Structural and conductivity studies on LiNiPO4 synthesized by the polyol method. J Alloys Compd 548:65–69CrossRef
181.
go back to reference Lloris JM, Pérez-Vicente C, Tirado JL (2002) Improvement of the electrochemical performance of LiCoPO4 5 V material using a novel synthesis procedure. Electrochem Solid State Lett 5:A234–A237CrossRef Lloris JM, Pérez-Vicente C, Tirado JL (2002) Improvement of the electrochemical performance of LiCoPO4 5 V material using a novel synthesis procedure. Electrochem Solid State Lett 5:A234–A237CrossRef
182.
go back to reference Yang J, Xu JJ (2006) Synthesis and characterization of carbon-coated lithium transition metal phosphates LiMPO4 (M = Fe, Mn, Co, Ni) prepared via a nonaqueous sol-gel route batteries, fuel cells, and energy conversion. J Electrochem Soc 153:A716–A723CrossRef Yang J, Xu JJ (2006) Synthesis and characterization of carbon-coated lithium transition metal phosphates LiMPO4 (M = Fe, Mn, Co, Ni) prepared via a nonaqueous sol-gel route batteries, fuel cells, and energy conversion. J Electrochem Soc 153:A716–A723CrossRef
183.
go back to reference Gangulibabu N, Bhuvaneswari D, Kalaiselvi N, Jayaprakash N, Periasamy P (2009) CAM sol-gel synthesized LiMPO4 (M = Co, Ni) cathodes for rechargeable lithium batteries. J Sol-Gel Sci Technol 49:137–144CrossRef Gangulibabu N, Bhuvaneswari D, Kalaiselvi N, Jayaprakash N, Periasamy P (2009) CAM sol-gel synthesized LiMPO4 (M = Co, Ni) cathodes for rechargeable lithium batteries. J Sol-Gel Sci Technol 49:137–144CrossRef
184.
go back to reference Amine K, Yasuda H, Yamachi M (2000) Olivine LiCoPO4 as 4.8-V electrode material for lithium batteries. Electrochem Solid State Lett 3:178–179CrossRef Amine K, Yasuda H, Yamachi M (2000) Olivine LiCoPO4 as 4.8-V electrode material for lithium batteries. Electrochem Solid State Lett 3:178–179CrossRef
185.
go back to reference Zhou F, Cococcioni M, Kang K, Ceder G (2004) The Li intercalation potential of LiMPO4 and LiMSiO4 olivines with M = Fe, Mn, Co, Ni. Electrochem Commun 6:1144–1148CrossRef Zhou F, Cococcioni M, Kang K, Ceder G (2004) The Li intercalation potential of LiMPO4 and LiMSiO4 olivines with M = Fe, Mn, Co, Ni. Electrochem Commun 6:1144–1148CrossRef
186.
go back to reference Howard WF, Spotnitz RM (2007) Theoretical evaluation of high-energy lithium metal phosphate cathode materials in Li-ion batteries. J Power Sourc 165:887–891CrossRef Howard WF, Spotnitz RM (2007) Theoretical evaluation of high-energy lithium metal phosphate cathode materials in Li-ion batteries. J Power Sourc 165:887–891CrossRef
187.
go back to reference Chevrier VL, Ong SP, Armiento R, Chan MKY, Ceder G (2010) Hybrid density functional calculations of redox potentials and formation energies of transition metal compounds. Phys Rev B 82:075122CrossRef Chevrier VL, Ong SP, Armiento R, Chan MKY, Ceder G (2010) Hybrid density functional calculations of redox potentials and formation energies of transition metal compounds. Phys Rev B 82:075122CrossRef
188.
go back to reference Rissouli K, Benkhouja K, Ramos-Barrado JR, Julien C (2003) Electrical conductivity in lithium orthophosphates. Mater Sci Eng B 98:185–189CrossRef Rissouli K, Benkhouja K, Ramos-Barrado JR, Julien C (2003) Electrical conductivity in lithium orthophosphates. Mater Sci Eng B 98:185–189CrossRef
189.
go back to reference Goñi A, Lezama L, Barberis GE, Pizarro JL, Arriortua MI, Rojo T (1996) Magnetic properties of the LiMPO4 (M = Co, Ni) compounds. J Magn Magn Mater 164:251–255CrossRef Goñi A, Lezama L, Barberis GE, Pizarro JL, Arriortua MI, Rojo T (1996) Magnetic properties of the LiMPO4 (M = Co, Ni) compounds. J Magn Magn Mater 164:251–255CrossRef
190.
go back to reference Julien CM, Mauger A, Zaghib K, Veillette R, Groult H (2012) Structural and electronic properties of the LiNiPO4 orthophosphate. Ionics 18:625–633CrossRef Julien CM, Mauger A, Zaghib K, Veillette R, Groult H (2012) Structural and electronic properties of the LiNiPO4 orthophosphate. Ionics 18:625–633CrossRef
191.
go back to reference Fomin VI, Gnezdilov VP, Kurnosov VS, Peschanskii AV, Yeremenko AV, Schmid H, Rivera JP, Gentil S (2002) Raman scattering in a LiNiPO4 single crystal. Low Temp Phys 28:203–209CrossRef Fomin VI, Gnezdilov VP, Kurnosov VS, Peschanskii AV, Yeremenko AV, Schmid H, Rivera JP, Gentil S (2002) Raman scattering in a LiNiPO4 single crystal. Low Temp Phys 28:203–209CrossRef
192.
go back to reference Ficher CAJ, Prieto VMH, Islam MS (2008) Lithium battery materials LiMPO4 (M = Mn, Fe, Co and Ni): insights into defect association, transport mechanisms and doping behaviour. Chem Mater 20:5907–5915CrossRef Ficher CAJ, Prieto VMH, Islam MS (2008) Lithium battery materials LiMPO4 (M = Mn, Fe, Co and Ni): insights into defect association, transport mechanisms and doping behaviour. Chem Mater 20:5907–5915CrossRef
193.
go back to reference Garcia-Moreno O, Alvarez-Vega M, Garcia-Alvarado F, Garcia-Jaca J, Garcia-Amores JM, Sanjuan ML, Amador U (2001) Influence of the structure on the electrochemical performance of lithium transition metal phosphates as cathodic materials in rechargeable lithium batteries: a new high-pressure form of LMPO4 (M = Fe and Ni). Chem Mater 13:1570–1576CrossRef Garcia-Moreno O, Alvarez-Vega M, Garcia-Alvarado F, Garcia-Jaca J, Garcia-Amores JM, Sanjuan ML, Amador U (2001) Influence of the structure on the electrochemical performance of lithium transition metal phosphates as cathodic materials in rechargeable lithium batteries: a new high-pressure form of LMPO4 (M = Fe and Ni). Chem Mater 13:1570–1576CrossRef
194.
go back to reference Piana M, Arrabito M, Bodoardo S, D’Epifanio A, Satolli D, Croce F, Scrosati B (2002) Characterization of phospho-olivines as materials for Li-ion cell cathodes. Ionics 8:17–26CrossRef Piana M, Arrabito M, Bodoardo S, D’Epifanio A, Satolli D, Croce F, Scrosati B (2002) Characterization of phospho-olivines as materials for Li-ion cell cathodes. Ionics 8:17–26CrossRef
195.
go back to reference Dimesso L, Jacke S, Spanheimer C, Jaegermann W (2012) Investigation on LiCoPO4 powders as cathode materials annealed under different atmospheres. J Solid State Electrochem 16:3911–3919 Dimesso L, Jacke S, Spanheimer C, Jaegermann W (2012) Investigation on LiCoPO4 powders as cathode materials annealed under different atmospheres. J Solid State Electrochem 16:3911–3919
196.
go back to reference Dimesso L, Becker D, Spanheimer C, Jaegermann W (2012) Investigation of graphitic carbon foams/LiNiPO4 composites. J Solid State Electrochem 16:3791–3798CrossRef Dimesso L, Becker D, Spanheimer C, Jaegermann W (2012) Investigation of graphitic carbon foams/LiNiPO4 composites. J Solid State Electrochem 16:3791–3798CrossRef
197.
go back to reference Dimesso L, Spanheimer C, Jaegermann W (2013) Effect of the Mg-substitution on the graphitic carbon foams – LiNi1-yMgyPO4 composites as possible cathodes materials for 5 V applications. Mater Res Bull 48:559–565CrossRef Dimesso L, Spanheimer C, Jaegermann W (2013) Effect of the Mg-substitution on the graphitic carbon foams – LiNi1-yMgyPO4 composites as possible cathodes materials for 5 V applications. Mater Res Bull 48:559–565CrossRef
198.
go back to reference Wolfenstine J, Allen J (2004) LiNiPO4–LiCoPO4 solid solutions as cathodes. J Power Sourc 136:150–153CrossRef Wolfenstine J, Allen J (2004) LiNiPO4–LiCoPO4 solid solutions as cathodes. J Power Sourc 136:150–153CrossRef
199.
go back to reference Ni J, Gao L, Lu L (2013) Carbon coated lithium cobalt phosphate for Li-ion batteries: comparison of three coating techniques. J Power Sourc 221:35–41CrossRef Ni J, Gao L, Lu L (2013) Carbon coated lithium cobalt phosphate for Li-ion batteries: comparison of three coating techniques. J Power Sourc 221:35–41CrossRef
200.
go back to reference Wolfenstine J, Read J, Allen J (2007) Effect of carbon on the electronic conductivity and discharge capacity LiCoPO4. J Power Sourc 163:1070–1073CrossRef Wolfenstine J, Read J, Allen J (2007) Effect of carbon on the electronic conductivity and discharge capacity LiCoPO4. J Power Sourc 163:1070–1073CrossRef
201.
go back to reference Wolfenstine J, Lee U, Poese B, Allen J (2005) Effect of oxygen partial pressure on the discharge capacity of LiCoPO4. J Power Sourc 144:226–230CrossRef Wolfenstine J, Lee U, Poese B, Allen J (2005) Effect of oxygen partial pressure on the discharge capacity of LiCoPO4. J Power Sourc 144:226–230CrossRef
202.
go back to reference Wolfenstine J, Poese B, Allen J (2004) Chemical oxidation of LiCoPO4. J Power Sourc 138:281–282CrossRef Wolfenstine J, Poese B, Allen J (2004) Chemical oxidation of LiCoPO4. J Power Sourc 138:281–282CrossRef
203.
go back to reference Ruffo R, Mari CM, Morazzoni F, Rosciano F, Scotti R (2007) Electrical and electrochemical behavior of several LiFexCo1-xPO4 solid solutions as cathode materials for lithium ion batteries. Ionics 13:287–291CrossRef Ruffo R, Mari CM, Morazzoni F, Rosciano F, Scotti R (2007) Electrical and electrochemical behavior of several LiFexCo1-xPO4 solid solutions as cathode materials for lithium ion batteries. Ionics 13:287–291CrossRef
204.
go back to reference Wolfenstine J (2006) Electrical conductivity of doped LiCoPO4. J Power Sourc 158:1431–1435CrossRef Wolfenstine J (2006) Electrical conductivity of doped LiCoPO4. J Power Sourc 158:1431–1435CrossRef
205.
go back to reference Wang F, Yang J, Li YN, Wang J (2011) Novel hedgehog-like 5 V LiCoPO4 positive electrode material for rechargeable lithium battery. J Power Sourc 196:4806–4810CrossRef Wang F, Yang J, Li YN, Wang J (2011) Novel hedgehog-like 5 V LiCoPO4 positive electrode material for rechargeable lithium battery. J Power Sourc 196:4806–4810CrossRef
206.
go back to reference Nakayama M, Goto S, Uchimoto Y, Wakihara M, Kitayama Y, Miyanaga T, Watanabe I (2005) X-ray absorption spectroscopic study on the electronic structure of Li1-x CoPO4 electrodes as 4.8 V positive electrodes for rechargeable lithium ion batteries. J Phys Chem B 109:11197–11203CrossRef Nakayama M, Goto S, Uchimoto Y, Wakihara M, Kitayama Y, Miyanaga T, Watanabe I (2005) X-ray absorption spectroscopic study on the electronic structure of Li1-x CoPO4 electrodes as 4.8 V positive electrodes for rechargeable lithium ion batteries. J Phys Chem B 109:11197–11203CrossRef
207.
go back to reference Huggins RA (2013) Do you really want an unsafe battery? J Electrochem Soc 160:A3001–A3005CrossRef Huggins RA (2013) Do you really want an unsafe battery? J Electrochem Soc 160:A3001–A3005CrossRef
208.
go back to reference Aravindan V, Cheah YL, Chui Ling WC, Madhavi S (2012) Effect of LiBOB additive on the electrochemical performance of LiCoPO4. J Electrochem Soc 159:A1435–A1439CrossRef Aravindan V, Cheah YL, Chui Ling WC, Madhavi S (2012) Effect of LiBOB additive on the electrochemical performance of LiCoPO4. J Electrochem Soc 159:A1435–A1439CrossRef
209.
go back to reference Cushing BL, Goodenough JB (2002) Li2NaV2(PO4)3: a 3.7 V lithium-insertion cathode with the rhombohedral NASICON structure. J Solid State Chem 162:176–181CrossRef Cushing BL, Goodenough JB (2002) Li2NaV2(PO4)3: a 3.7 V lithium-insertion cathode with the rhombohedral NASICON structure. J Solid State Chem 162:176–181CrossRef
210.
go back to reference Goodenough JB, Hong HYP, Kafalas JA (1976) Fast Na+-ion transport in skeleton structures. Mat Res Bull 11:203–220CrossRef Goodenough JB, Hong HYP, Kafalas JA (1976) Fast Na+-ion transport in skeleton structures. Mat Res Bull 11:203–220CrossRef
211.
go back to reference Anantharamulu N, Rao K, Rambabu G, Kumar B, Radha V, Vithal M (2011) A wide-ranging review on Nasicon type materials. J Mater Sci 46:2821–2837CrossRef Anantharamulu N, Rao K, Rambabu G, Kumar B, Radha V, Vithal M (2011) A wide-ranging review on Nasicon type materials. J Mater Sci 46:2821–2837CrossRef
212.
go back to reference Bykov B, Chirkin AP, Demyanets LN, Doronin SN, Genkina EA, Ivanov-Shits AK, Kondratyuk IP, Maksimov BA, Melnikov OK, Muradyan LN, Simonov VI, Timofeeva VA (1990) Superionic conductors Li3M2(PO4)3 (M = Fe, Sr, Cr): synthesis, structure and electrophysical properties. Solid State Ionics 38:31–52CrossRef Bykov B, Chirkin AP, Demyanets LN, Doronin SN, Genkina EA, Ivanov-Shits AK, Kondratyuk IP, Maksimov BA, Melnikov OK, Muradyan LN, Simonov VI, Timofeeva VA (1990) Superionic conductors Li3M2(PO4)3 (M = Fe, Sr, Cr): synthesis, structure and electrophysical properties. Solid State Ionics 38:31–52CrossRef
213.
go back to reference D’Yvoire F, Pintard-Scrépel M, Bretey E, De la Rochère M (1983) Phase transitions and ionic conduction in 3D skeleton phosphates A3M2(PO4)3: A = Li, Na, Ag, K; M = Cr, Fe. Solid State Ionics 9–10:851–857CrossRef D’Yvoire F, Pintard-Scrépel M, Bretey E, De la Rochère M (1983) Phase transitions and ionic conduction in 3D skeleton phosphates A3M2(PO4)3: A = Li, Na, Ag, K; M = Cr, Fe. Solid State Ionics 9–10:851–857CrossRef
214.
go back to reference Barj M, Lucazeau G, Delmas C (1992) Raman and infrared spectra of some chromium Nasicon-type materials: short-range disorder characterization. J Solid State Chemistry 100:141–150CrossRef Barj M, Lucazeau G, Delmas C (1992) Raman and infrared spectra of some chromium Nasicon-type materials: short-range disorder characterization. J Solid State Chemistry 100:141–150CrossRef
215.
go back to reference Goni A, Lezama L, Moreno NO, Fournes L, Olazcuaga R, Barberis GE, Rojo T (2000) Spectrocopic and magnetic properties of α-Li3Fe2(PO4)3: a two-submattice ferrimagnet. Chem Mater 12:62–66CrossRef Goni A, Lezama L, Moreno NO, Fournes L, Olazcuaga R, Barberis GE, Rojo T (2000) Spectrocopic and magnetic properties of α-Li3Fe2(PO4)3: a two-submattice ferrimagnet. Chem Mater 12:62–66CrossRef
216.
go back to reference Anderson AS, Kalska B, Jonsson P, Haggstrom L, Nordblad P, Tellgren R, Thomas JO (2000) The magnetic structure and properties of rhombohedral Li3Fe2(PO4)3. J Mater Chem 10:2542–2547CrossRef Anderson AS, Kalska B, Jonsson P, Haggstrom L, Nordblad P, Tellgren R, Thomas JO (2000) The magnetic structure and properties of rhombohedral Li3Fe2(PO4)3. J Mater Chem 10:2542–2547CrossRef
217.
go back to reference Ait-Salah A, Jozwiak P, Garbarczyk J, Gendron F, Mauger A, Julien CM (2006) Magnetic properties of orthorhombic Li3Fe2(PO4)3 phase. Electrochem Soc Symp Proc 2006–19:173–181 Ait-Salah A, Jozwiak P, Garbarczyk J, Gendron F, Mauger A, Julien CM (2006) Magnetic properties of orthorhombic Li3Fe2(PO4)3 phase. Electrochem Soc Symp Proc 2006–19:173–181
218.
go back to reference Kim H, Lee S, Park YU, Kim H, Kim J, Jeon S, Kang K (2011) Neutron and X-ray diffraction study of pyrophosphate-based Li2-xMP2O8 (M = Fe, Co) for lithium rechargeable battery electrodes. Chem Mater 23:3930–3938CrossRef Kim H, Lee S, Park YU, Kim H, Kim J, Jeon S, Kang K (2011) Neutron and X-ray diffraction study of pyrophosphate-based Li2-xMP2O8 (M = Fe, Co) for lithium rechargeable battery electrodes. Chem Mater 23:3930–3938CrossRef
219.
go back to reference Armand M, Michot C, Ravet N, Simoneau M, Hovington P (2000) New lithium insertion electrode based on orthosilicate derivatives. European patent EP1134 826 A1 Armand M, Michot C, Ravet N, Simoneau M, Hovington P (2000) New lithium insertion electrode based on orthosilicate derivatives. European patent EP1134 826 A1
220.
go back to reference Dominko R, Conte DE, Hanzel D, Gaberscek M, Jamnik J (2008) Impact of synthesis conditions on the structure and performance of Li2FeSiO4. J Power Sourc 178:842–847CrossRef Dominko R, Conte DE, Hanzel D, Gaberscek M, Jamnik J (2008) Impact of synthesis conditions on the structure and performance of Li2FeSiO4. J Power Sourc 178:842–847CrossRef
221.
go back to reference Gong ZL, He GN, Li J, Yang Y (2008) Nanostructured Li2FeSiO4 electrode material synthesized through hydrothermal-assisted sol-gel process. Electrochem Solid-State Lett 11(5):A60–A63CrossRef Gong ZL, He GN, Li J, Yang Y (2008) Nanostructured Li2FeSiO4 electrode material synthesized through hydrothermal-assisted sol-gel process. Electrochem Solid-State Lett 11(5):A60–A63CrossRef
222.
go back to reference Yan Z, Cai S, Miao L, Zhou X, Zhao Y (2012) Synthesis and characterization of in situ carbon-coated Li2FeSiO4 cathode materials for lithium ion battery. J Alloys Compd 511:101–106CrossRef Yan Z, Cai S, Miao L, Zhou X, Zhao Y (2012) Synthesis and characterization of in situ carbon-coated Li2FeSiO4 cathode materials for lithium ion battery. J Alloys Compd 511:101–106CrossRef
223.
go back to reference Zheng Z, Wang Y, Zhang A, Zhang T, Cheng F, Tao Z, Chen J (2012) Porous Li2FeSiO4/C nanocomposite as the cathode material of lithium-ion batteries. J Power Sourc 198:229–235CrossRef Zheng Z, Wang Y, Zhang A, Zhang T, Cheng F, Tao Z, Chen J (2012) Porous Li2FeSiO4/C nanocomposite as the cathode material of lithium-ion batteries. J Power Sourc 198:229–235CrossRef
224.
go back to reference Lv D, Wen W, Huang X, Bai J, Mi J, Wu S, Yang Y (2011) A novel Li2FeSiO4/C composite: synthesis, characterization and high storage capacity. J Mater Chem 21:9506–9512CrossRef Lv D, Wen W, Huang X, Bai J, Mi J, Wu S, Yang Y (2011) A novel Li2FeSiO4/C composite: synthesis, characterization and high storage capacity. J Mater Chem 21:9506–9512CrossRef
225.
go back to reference Saracibar A, Van Der Ven A, Arroyo-De Dompablo ME (2012) Crystal structure, energetics, and electrochemistry of Li2FeSiO4 polymorphs from first principles calculations. Chem Mater 24(3):495–503CrossRef Saracibar A, Van Der Ven A, Arroyo-De Dompablo ME (2012) Crystal structure, energetics, and electrochemistry of Li2FeSiO4 polymorphs from first principles calculations. Chem Mater 24(3):495–503CrossRef
226.
go back to reference Quoirin G, Tarascon JM, Masquelier C, Delacourt C, Poizot P, Taulelle F (2008) Mixed lithium silicates. World Patent WO 2008/107571 A2 Quoirin G, Tarascon JM, Masquelier C, Delacourt C, Poizot P, Taulelle F (2008) Mixed lithium silicates. World Patent WO 2008/107571 A2
227.
go back to reference Nishimura S, Hayase S, Kanno R, Yashima M, Nakayama N, Yamada A (2008) Structure of Li2FeSiO4. J Am Chem Soc 130:13212–13213CrossRef Nishimura S, Hayase S, Kanno R, Yashima M, Nakayama N, Yamada A (2008) Structure of Li2FeSiO4. J Am Chem Soc 130:13212–13213CrossRef
228.
go back to reference Boulineau A, Sirisopanaporn C, Dominko R, Armstrong AR, Bruce P, Masquelier C (2010) Polymorphism and structural defects in Li2FeSiO4. Dalton Trans 27:6310–6316CrossRef Boulineau A, Sirisopanaporn C, Dominko R, Armstrong AR, Bruce P, Masquelier C (2010) Polymorphism and structural defects in Li2FeSiO4. Dalton Trans 27:6310–6316CrossRef
229.
go back to reference Sirisopanaporn C, Boulineau A, Dominko R, Hanzel D, Armstrong AR, Bruce P, Masquelier C (2010) Crystal structure of a new polymorphism in Li2FeSiO4. Inorg Chem 49:7446–7451CrossRef Sirisopanaporn C, Boulineau A, Dominko R, Hanzel D, Armstrong AR, Bruce P, Masquelier C (2010) Crystal structure of a new polymorphism in Li2FeSiO4. Inorg Chem 49:7446–7451CrossRef
230.
go back to reference Dominko R, Bele M, Gaberscek M, Meden A, Remskar M, Jamnik J (2006) Structure and electrochemical performance of Li2MnSiO4 and Li2FeSiO4 as potential Li-battery cathode materials. Electrochem Commun 8:217–222CrossRef Dominko R, Bele M, Gaberscek M, Meden A, Remskar M, Jamnik J (2006) Structure and electrochemical performance of Li2MnSiO4 and Li2FeSiO4 as potential Li-battery cathode materials. Electrochem Commun 8:217–222CrossRef
231.
go back to reference Nadherna M, Dominko R, Hanzel D, Relter J, Gaberscek M (2009) Electrochemical behavior of Li2FeSiO4 with ionic liquids at elevated temperature. J Electrochem Soc 156:A619–A626CrossRef Nadherna M, Dominko R, Hanzel D, Relter J, Gaberscek M (2009) Electrochemical behavior of Li2FeSiO4 with ionic liquids at elevated temperature. J Electrochem Soc 156:A619–A626CrossRef
232.
go back to reference Dominko R (2008) Li2MSiO4 (M = Fe and/or Mn) cathode materials. J Power Sourc 184:462–468CrossRef Dominko R (2008) Li2MSiO4 (M = Fe and/or Mn) cathode materials. J Power Sourc 184:462–468CrossRef
233.
go back to reference Muraliganth T, Stroukoff KR, Manthiram A (2010) Microwave-solvothermal synthesis of nanostructured Li2MSiO4/C (M = Mn and Fe) cathodes for lithium-ion batteries. Chem Mater 22:5754–5761CrossRef Muraliganth T, Stroukoff KR, Manthiram A (2010) Microwave-solvothermal synthesis of nanostructured Li2MSiO4/C (M = Mn and Fe) cathodes for lithium-ion batteries. Chem Mater 22:5754–5761CrossRef
234.
go back to reference Shao B, Taniguchi I (2012) Synthesis of Li2FeSiO4/C nanocomposite cathodes for lithium batteries by a novel synthesis route and their electrochemical properties. J Power Sourc 199:278–286CrossRef Shao B, Taniguchi I (2012) Synthesis of Li2FeSiO4/C nanocomposite cathodes for lithium batteries by a novel synthesis route and their electrochemical properties. J Power Sourc 199:278–286CrossRef
235.
go back to reference Fan X-Y, Li Y, Wang JJ, Gou L, Zhao P, Li D-L, Huang L, Sun S-G (2010) Synthesis and electrochemical performance of porous Li2FeSiO4/C cathode material for long-life lithium-ion batteries. J Alloys Compd 493:77–80CrossRef Fan X-Y, Li Y, Wang JJ, Gou L, Zhao P, Li D-L, Huang L, Sun S-G (2010) Synthesis and electrochemical performance of porous Li2FeSiO4/C cathode material for long-life lithium-ion batteries. J Alloys Compd 493:77–80CrossRef
236.
go back to reference Vediappan K, Guerfi A, Gariépy V, Demopoulos GP, Hovington P, Trottier J, Mauger A, Zaghib K, Julien CM (2014) Stirring effect in hydrothermal synthesis of C-LiFePO4. J Power Sourc 266:99–106CrossRef Vediappan K, Guerfi A, Gariépy V, Demopoulos GP, Hovington P, Trottier J, Mauger A, Zaghib K, Julien CM (2014) Stirring effect in hydrothermal synthesis of C-LiFePO4. J Power Sourc 266:99–106CrossRef
237.
go back to reference Zaghib K, Salah AA, Ravet N, Mauger A, Gendron F, Julien CM (2006) Structural, magnetic and electrochemical properties of lithium iron orthosilicate. J Power Sourc 160:1381–1386CrossRef Zaghib K, Salah AA, Ravet N, Mauger A, Gendron F, Julien CM (2006) Structural, magnetic and electrochemical properties of lithium iron orthosilicate. J Power Sourc 160:1381–1386CrossRef
238.
go back to reference Nyten A, Kamali S, Häggström L, Gustafsson T, Thomas JO (2006) The lithium extraction/insertion mechanism in Li2FeSiO4. J Mater Chem 16:2266–2272CrossRef Nyten A, Kamali S, Häggström L, Gustafsson T, Thomas JO (2006) The lithium extraction/insertion mechanism in Li2FeSiO4. J Mater Chem 16:2266–2272CrossRef
239.
go back to reference Nyten A, Stjerndahl M, Rensmo H, Armand M, Gustafsson T, Edström K, Thomas JO (2006) Surface characterization and stability phenomena in Li2FeSiO4 studied by PES/XPS. J Mater Chem 16:3483–3488CrossRef Nyten A, Stjerndahl M, Rensmo H, Armand M, Gustafsson T, Edström K, Thomas JO (2006) Surface characterization and stability phenomena in Li2FeSiO4 studied by PES/XPS. J Mater Chem 16:3483–3488CrossRef
240.
go back to reference Duncan H, Kondamreddy A, Mercier PHJ, Le Page Y, Abu-Lebdeh Y, Couillard M, Whitfield PS, Davidson I (2011) Novel Pn polymorph for Li2MnSiO4 and its electrochemical activity as a cathode material in Li-ion batteries. Chem Mater 23:5446–5456CrossRef Duncan H, Kondamreddy A, Mercier PHJ, Le Page Y, Abu-Lebdeh Y, Couillard M, Whitfield PS, Davidson I (2011) Novel Pn polymorph for Li2MnSiO4 and its electrochemical activity as a cathode material in Li-ion batteries. Chem Mater 23:5446–5456CrossRef
241.
go back to reference Kuganathan N, Islam MS (2009) Li2MnSiO4 lithium battery material: atomic-scale study of defects, lithium mobility, and trivalent dopants. Chem Mater 21:5196–5202CrossRef Kuganathan N, Islam MS (2009) Li2MnSiO4 lithium battery material: atomic-scale study of defects, lithium mobility, and trivalent dopants. Chem Mater 21:5196–5202CrossRef
242.
go back to reference Arroyo-de Dompablo ME, Armand M, Tarascon JM, Amador U (2006) On-demand design of polyoxianionic cathode materials based on electronegativity correlations: an exploration of the Li2MSiO4 system (M = Fe, Mn, Co, Ni). Electrochem Commun 8:1292–1298CrossRef Arroyo-de Dompablo ME, Armand M, Tarascon JM, Amador U (2006) On-demand design of polyoxianionic cathode materials based on electronegativity correlations: an exploration of the Li2MSiO4 system (M = Fe, Mn, Co, Ni). Electrochem Commun 8:1292–1298CrossRef
243.
go back to reference Gong ZL, Li XY, Yang Y (2006) Synthesis and characterization of Li2Mn x Fe 1-x SiO4 as a cathode material for lithium-ion batteries. Electrochem Solid State Lett 9:A542–A544CrossRef Gong ZL, Li XY, Yang Y (2006) Synthesis and characterization of Li2Mn x Fe 1-x SiO4 as a cathode material for lithium-ion batteries. Electrochem Solid State Lett 9:A542–A544CrossRef
244.
go back to reference Kokalj A, Dominko R, Mali G, Meden A, Gaberscek M, Jamnik J (2007) Beyond one-electron reaction in Li cathode materials: designing Li2Mn x Fe1-x SiO4. Chem Mater 19:3633–3640CrossRef Kokalj A, Dominko R, Mali G, Meden A, Gaberscek M, Jamnik J (2007) Beyond one-electron reaction in Li cathode materials: designing Li2Mn x Fe1-x SiO4. Chem Mater 19:3633–3640CrossRef
245.
go back to reference Deng C, Zhang S, Yang SY (2009) Effect of Mn substitution on the structural, morphological and electrochemical behaviors of Li2Mn x Fe1-x SiO4 synthesized via citric acid assisted sol–gel method. J Alloys Compd 487:L18–L23CrossRef Deng C, Zhang S, Yang SY (2009) Effect of Mn substitution on the structural, morphological and electrochemical behaviors of Li2Mn x Fe1-x SiO4 synthesized via citric acid assisted sol–gel method. J Alloys Compd 487:L18–L23CrossRef
246.
go back to reference Dominko R, Sirisopanaporn C, Masquelier C, Hanzel D, Arcon I, Gaberscek M (2010) On the origin of the electrochemical capacity of Li2Fe0.8Mn0.2SiO4. J Electrochem Soc 157:A1309–A1316CrossRef Dominko R, Sirisopanaporn C, Masquelier C, Hanzel D, Arcon I, Gaberscek M (2010) On the origin of the electrochemical capacity of Li2Fe0.8Mn0.2SiO4. J Electrochem Soc 157:A1309–A1316CrossRef
247.
go back to reference Yang X-F, Yang J-H, Zaghib K, Trudeau ML, Ying JY (2015) Synthesis of pure Li2MnSiO4 @ C porous nanoboxes for high-capacity Li-ion battery cathodes. Nano Energy 12:305–313CrossRef Yang X-F, Yang J-H, Zaghib K, Trudeau ML, Ying JY (2015) Synthesis of pure Li2MnSiO4 @ C porous nanoboxes for high-capacity Li-ion battery cathodes. Nano Energy 12:305–313CrossRef
248.
go back to reference Graf C, Vossen DLJ, Imhof A, Van Blaaderen A (2003) A general method to coat colloidal particles with silica. Langmuir 19:6693–6700CrossRef Graf C, Vossen DLJ, Imhof A, Van Blaaderen A (2003) A general method to coat colloidal particles with silica. Langmuir 19:6693–6700CrossRef
249.
go back to reference Biernacki L, Pokrzywnicki S (1999) The thermal decomposition of manganese carbonate thermogravimetry and exoemission of electrons. J Therm Anal Calorim 55:227–232CrossRef Biernacki L, Pokrzywnicki S (1999) The thermal decomposition of manganese carbonate thermogravimetry and exoemission of electrons. J Therm Anal Calorim 55:227–232CrossRef
250.
go back to reference Masquelier C, Croguennec L (2013) Polyanionic (phosphates, silicates, sulfates) frameworks as electrode materials for rechargeable Li (or Na) batteries. Chem Rev 113:6552–6591CrossRef Masquelier C, Croguennec L (2013) Polyanionic (phosphates, silicates, sulfates) frameworks as electrode materials for rechargeable Li (or Na) batteries. Chem Rev 113:6552–6591CrossRef
Metadata
Title
Polyanionic Compounds as Cathode Materials
Authors
Christian Julien
Alain Mauger
Ashok Vijh
Karim Zaghib
Copyright Year
2016
DOI
https://doi.org/10.1007/978-3-319-19108-9_7