Skip to main content
Top
Published in: Journal of Materials Science 13/2019

22-03-2019 | Composites

Polylactic acid/sodium alginate/hydroxyapatite composite scaffolds with trabecular tissue morphology designed by a bone remodeling model using 3D printing

Authors: I. Fernández-Cervantes, M. A. Morales, R. Agustín-Serrano, M. Cardenas-García, P. V. Pérez-Luna, B. L. Arroyo-Reyes, A. Maldonado-García

Published in: Journal of Materials Science | Issue 13/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The article presents a new methodology that employs 3D printing technology to generate a microporous composite material of polylactic acid, sodium alginate and hydroxyapatite, whose microstructure is designed by means of the 3D numerical solution from a mathematical model. This model represents the spatio-temporal dynamics of the interaction between osteoblasts and osteoclasts in the bone remodeling. The microporosity of composite material mimics the structure of human trabecular bone. This material has density with microporosity pretty close to the one that is exhibited by the natural bone tissue. Close relationship between the material processing and its elasticity module is observed. When subjecting this composite material to a simulated body fluid treatment, the mechanical resistance to compression is increased due to induced mineralization of hydroxyapatite crystals on its surface. The methodology shows potential to generate structures that allow the control of the composite material properties. The material presents a microporosity that has morphological and chemical properties suitable for future applications in tissue engineering as bone scaffold.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Jaffe M, Hammond W, Tolias P, Arinzeh T (2013) Characterization of biomaterials, 1st edn. Woodhead Publishing, OxfordCrossRef Jaffe M, Hammond W, Tolias P, Arinzeh T (2013) Characterization of biomaterials, 1st edn. Woodhead Publishing, OxfordCrossRef
2.
go back to reference Martin TJ, Ng KW (1994) Mechanisms by which cells of the osteoblast lineage control osteoclast formation and activity. J Cell Biochem 56:357–366CrossRef Martin TJ, Ng KW (1994) Mechanisms by which cells of the osteoblast lineage control osteoclast formation and activity. J Cell Biochem 56:357–366CrossRef
3.
go back to reference Rodan GA, Martin TJ (2000) Therapeutic approaches to bone diseases. Science 289:1508–1514CrossRef Rodan GA, Martin TJ (2000) Therapeutic approaches to bone diseases. Science 289:1508–1514CrossRef
4.
go back to reference Mouriño V, Boccaccini AR (2010) Bone tissue engineering therapeutics: controlled drug delivery in three-dimensional scaffolds. J R Soc Interface 7:209–227CrossRef Mouriño V, Boccaccini AR (2010) Bone tissue engineering therapeutics: controlled drug delivery in three-dimensional scaffolds. J R Soc Interface 7:209–227CrossRef
5.
go back to reference Seitz H, Rieder W, Irsen S, Leukers B, Tille C (2005) Three-dimensional printing of porous ceramic scaffolds for bone tissue engineering. J Biomed Mater Res B Appl Biomater 74:782–788CrossRef Seitz H, Rieder W, Irsen S, Leukers B, Tille C (2005) Three-dimensional printing of porous ceramic scaffolds for bone tissue engineering. J Biomed Mater Res B Appl Biomater 74:782–788CrossRef
6.
go back to reference Jones AC, Arns CH, Sheppard AP, Hutmacher DW, Milthorpe BK, Knackstedt MA (2007) Assessment of bone ingrowth into porous biomaterials using MICRO-CT. Biomaterials 28:2491–504CrossRef Jones AC, Arns CH, Sheppard AP, Hutmacher DW, Milthorpe BK, Knackstedt MA (2007) Assessment of bone ingrowth into porous biomaterials using MICRO-CT. Biomaterials 28:2491–504CrossRef
7.
go back to reference Rezwan F, Chen QZ, Blaker JJ, Boccaccini AR (2006) Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials 27:3413–3431CrossRef Rezwan F, Chen QZ, Blaker JJ, Boccaccini AR (2006) Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials 27:3413–3431CrossRef
8.
go back to reference Muller B, Deyhle H, Fierz F (2009) Bio-mimetic hollow scaffolds for long bone replacement. Proc SPIE 7401:1–13 Muller B, Deyhle H, Fierz F (2009) Bio-mimetic hollow scaffolds for long bone replacement. Proc SPIE 7401:1–13
10.
go back to reference Liu Y, Lim J, Teoh SH (2013) Review: development of clinically relevant scaffolds for vascularised bone tissue engineering. Biotechnol Adv 31:688–705CrossRef Liu Y, Lim J, Teoh SH (2013) Review: development of clinically relevant scaffolds for vascularised bone tissue engineering. Biotechnol Adv 31:688–705CrossRef
11.
go back to reference Hao Z, Song Z, Huang J, Huang K, Panetta A, Gu Z, Wu J (2017) The scaffold microenvironment for stem cell based bone tissue engineering. Biomater Sci 5:1382–1392CrossRef Hao Z, Song Z, Huang J, Huang K, Panetta A, Gu Z, Wu J (2017) The scaffold microenvironment for stem cell based bone tissue engineering. Biomater Sci 5:1382–1392CrossRef
12.
go back to reference Salgado AJ, Coutinho OP, Reis RL (2004) Bone tissue engineering: state of the art and future trends. Macromol Biosci 4:743–765CrossRef Salgado AJ, Coutinho OP, Reis RL (2004) Bone tissue engineering: state of the art and future trends. Macromol Biosci 4:743–765CrossRef
13.
go back to reference Velasco MA, Lancheros Y, Garzón-Alvarado DA (2016) Geometric and mechanical properties evaluation of scaffolds for bone tissue applications designing by a reaction–diffusion models and manufactured with a material jetting system. J Comput Des Eng 3:385–397 Velasco MA, Lancheros Y, Garzón-Alvarado DA (2016) Geometric and mechanical properties evaluation of scaffolds for bone tissue applications designing by a reaction–diffusion models and manufactured with a material jetting system. J Comput Des Eng 3:385–397
14.
go back to reference Karageorgiou V, Kaplan D (2005) Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials 26:5474–5491CrossRef Karageorgiou V, Kaplan D (2005) Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials 26:5474–5491CrossRef
15.
go back to reference Xue W, Krishna BV, Bandyopadhyay A, Bose S (2007) Processing and biocompatibility evaluation of laser processed porous titanium. Acta Biomater 3:1007–1018CrossRef Xue W, Krishna BV, Bandyopadhyay A, Bose S (2007) Processing and biocompatibility evaluation of laser processed porous titanium. Acta Biomater 3:1007–1018CrossRef
16.
go back to reference Otsuki B, Takemoto M, Fujibayashi S, Neo M, Kokubo T, Nakamura T (2006) Pore throat size and connectivity determine bone and tissue ingrowth into porous implants: three-dimensional micro-CT based structural analyses of porous bioactive titanium implants. Biomaterials 27:5892–5900CrossRef Otsuki B, Takemoto M, Fujibayashi S, Neo M, Kokubo T, Nakamura T (2006) Pore throat size and connectivity determine bone and tissue ingrowth into porous implants: three-dimensional micro-CT based structural analyses of porous bioactive titanium implants. Biomaterials 27:5892–5900CrossRef
17.
go back to reference Stoppato M, Carletti E, Sidarovich V, Quattrone A, Unger RE, Kirkpatrick CJ, Migliaresi C, Motta A (2013) Influence of scaffold pore size on collagen I development: a new in vitro evaluation perspective. J Bioact Compat Polym 28:16–32CrossRef Stoppato M, Carletti E, Sidarovich V, Quattrone A, Unger RE, Kirkpatrick CJ, Migliaresi C, Motta A (2013) Influence of scaffold pore size on collagen I development: a new in vitro evaluation perspective. J Bioact Compat Polym 28:16–32CrossRef
18.
go back to reference Das K, Bose S, Bandyopadhyay A (2007) Surface modifications and cell-materials interactions with anodized Ti. Acta Biomater 3:573–585CrossRef Das K, Bose S, Bandyopadhyay A (2007) Surface modifications and cell-materials interactions with anodized Ti. Acta Biomater 3:573–585CrossRef
19.
go back to reference Bodhak S, Bose S, Bandyopadhyay A (2009) Role of surface charge and wettability on early stage mineralization and bone cell-materials interactions of polarized hydroxyapatite. Acta Biomater 5:2178–2188CrossRef Bodhak S, Bose S, Bandyopadhyay A (2009) Role of surface charge and wettability on early stage mineralization and bone cell-materials interactions of polarized hydroxyapatite. Acta Biomater 5:2178–2188CrossRef
20.
go back to reference Tarafder S, Banerjee S, Bandyopadhyay A, Bose S (2010) Electrically polarized biphasic calcium phosphates: adsorption and release of bovine serum albumin. Langmuir 26:16625–16629CrossRef Tarafder S, Banerjee S, Bandyopadhyay A, Bose S (2010) Electrically polarized biphasic calcium phosphates: adsorption and release of bovine serum albumin. Langmuir 26:16625–16629CrossRef
21.
go back to reference Kucharska M, Butruk B, Walenko K, Brynk T, Ciach T (2012) Fabrication of in-situ foamed chitosan/ \({\beta }\)-TCP scaffolds for bone tissue engineering application. Mater Lett 85:124–127CrossRef Kucharska M, Butruk B, Walenko K, Brynk T, Ciach T (2012) Fabrication of in-situ foamed chitosan/ \({\beta }\)-TCP scaffolds for bone tissue engineering application. Mater Lett 85:124–127CrossRef
22.
go back to reference Cao H, Kuboyama N (2010) A biodegradable porous composite scaffold of PGA/beta-TCP for bone tissue engineering. Bone 46:386–395CrossRef Cao H, Kuboyama N (2010) A biodegradable porous composite scaffold of PGA/beta-TCP for bone tissue engineering. Bone 46:386–395CrossRef
23.
go back to reference Sultana N, Wang M (2008) Fabrication of HA/PHBV composite scaffolds through the emulsion freezing/freeze-drying process and characterisation of the scaffolds. J Mater Sci Mater Med 19:2555–2561CrossRef Sultana N, Wang M (2008) Fabrication of HA/PHBV composite scaffolds through the emulsion freezing/freeze-drying process and characterisation of the scaffolds. J Mater Sci Mater Med 19:2555–2561CrossRef
24.
go back to reference Hutmacher DW (2000) Scaffolds in tissue engineering bone and cartilage. Biomaterials 21:2529–2543CrossRef Hutmacher DW (2000) Scaffolds in tissue engineering bone and cartilage. Biomaterials 21:2529–2543CrossRef
25.
go back to reference Yoshikawa H, Tamai N, Murase T, Myoui A (2009) Interconnected porous hydroxyapatite ceramics for bone tissue engineering. J R Soc Interface 6:S341–S348CrossRef Yoshikawa H, Tamai N, Murase T, Myoui A (2009) Interconnected porous hydroxyapatite ceramics for bone tissue engineering. J R Soc Interface 6:S341–S348CrossRef
26.
go back to reference Bose S, Suguira S, Bandyopadhyay A (1999) Processing of controlled porosity ceramic structures via fused deposition. Scr Mater 41:1009–1014CrossRef Bose S, Suguira S, Bandyopadhyay A (1999) Processing of controlled porosity ceramic structures via fused deposition. Scr Mater 41:1009–1014CrossRef
27.
go back to reference Bose S, Darsell J, Kintner M, Hosick H, Bandyopadhyay A (2003) Pore size and pore volume effects on alumina and TCP ceramic scaffolds. Mater Sci Eng C 23:479–486CrossRef Bose S, Darsell J, Kintner M, Hosick H, Bandyopadhyay A (2003) Pore size and pore volume effects on alumina and TCP ceramic scaffolds. Mater Sci Eng C 23:479–486CrossRef
28.
go back to reference Gibson I, Rosen D, Stucker B (2015) Additive manufacturing technologies: 3D printing, rapid prototyping, and direct digital manufacturing, 2nd edn. Springer, New YorkCrossRef Gibson I, Rosen D, Stucker B (2015) Additive manufacturing technologies: 3D printing, rapid prototyping, and direct digital manufacturing, 2nd edn. Springer, New YorkCrossRef
29.
go back to reference Gantenbein S, Masania K, Woigk W, Sesseg JPW, Tervoort TA, Studart AR (2018) Three-dimensional printing of hierarchical liquid-crystal-polymer structures. Nature 561:226–230CrossRef Gantenbein S, Masania K, Woigk W, Sesseg JPW, Tervoort TA, Studart AR (2018) Three-dimensional printing of hierarchical liquid-crystal-polymer structures. Nature 561:226–230CrossRef
30.
go back to reference Inzana JA, Olvera D, Fuller SM, Kelly JP, Graeve OA, Schwarz EM, Kates SL, Awad HA (2014) 3D printing of composite calcium phosphate and collagen scaffolds for bone regeneration. Biomaterials 35:4026–4034CrossRef Inzana JA, Olvera D, Fuller SM, Kelly JP, Graeve OA, Schwarz EM, Kates SL, Awad HA (2014) 3D printing of composite calcium phosphate and collagen scaffolds for bone regeneration. Biomaterials 35:4026–4034CrossRef
31.
go back to reference Komarova SV, Smith RJ, Dixon SJ, Sims SM, Wahl LM (2003) Mathematical model predicts a critical role for osteoclast autocrine regulation in the control of bone remodeling. Bone 33:206–215CrossRef Komarova SV, Smith RJ, Dixon SJ, Sims SM, Wahl LM (2003) Mathematical model predicts a critical role for osteoclast autocrine regulation in the control of bone remodeling. Bone 33:206–215CrossRef
32.
go back to reference Ayati BP, Edwards CM, Webb GF, Wikswo JP (2010) A mathematical model of bone remodeling dynamics for normal bone cell populations and myeloma bone disease. Biol Direct 5:1–17CrossRef Ayati BP, Edwards CM, Webb GF, Wikswo JP (2010) A mathematical model of bone remodeling dynamics for normal bone cell populations and myeloma bone disease. Biol Direct 5:1–17CrossRef
33.
go back to reference Felfel RM, Poocza L, Gimeno-Fabra M, Milde T, Hildebrand G, Ahmed I, Scotchford C, Sottile V, Grant DM, Liefeith K (2016) In vitro degradation and mechanical properties of PLA-PCL copolymer unit cell scaffolds generated by two-photon polymerization. Biomed Mater 11:1–14CrossRef Felfel RM, Poocza L, Gimeno-Fabra M, Milde T, Hildebrand G, Ahmed I, Scotchford C, Sottile V, Grant DM, Liefeith K (2016) In vitro degradation and mechanical properties of PLA-PCL copolymer unit cell scaffolds generated by two-photon polymerization. Biomed Mater 11:1–14CrossRef
34.
go back to reference Zhu Y, Wan Y, Zhang J, Yin D, Cheng W (2014) Manufacture of layered collagen/chitosan-polycaprolactone scaffolds with biomimetic microarchitecture. Colloids Surf B Biointerfaces 113:352–356CrossRef Zhu Y, Wan Y, Zhang J, Yin D, Cheng W (2014) Manufacture of layered collagen/chitosan-polycaprolactone scaffolds with biomimetic microarchitecture. Colloids Surf B Biointerfaces 113:352–356CrossRef
35.
go back to reference Jang IG, Kim IY (2008) Computational study of Wolffs law with trabecular architecture in the human proximal femur using topology optimization. J Biomech 41:2353–2361CrossRef Jang IG, Kim IY (2008) Computational study of Wolffs law with trabecular architecture in the human proximal femur using topology optimization. J Biomech 41:2353–2361CrossRef
36.
go back to reference Tsubota K, Suzuki Y, Yamada T, Hojo M, Makinouchi A, Adachi T (2009) Computer simulation of trabecular remodeling in human proximal femur using large-scale voxel FE models: approach to understanding Wolffs law. J Biomech 42:1088–1094CrossRef Tsubota K, Suzuki Y, Yamada T, Hojo M, Makinouchi A, Adachi T (2009) Computer simulation of trabecular remodeling in human proximal femur using large-scale voxel FE models: approach to understanding Wolffs law. J Biomech 42:1088–1094CrossRef
37.
go back to reference Boyle C, Kim IY (2011) Three-dimensional micro-level computational study of Wolffs law via trabecular bone remodeling in the human proximal femur using design space topology optimization. J Biomech 44:935–942CrossRef Boyle C, Kim IY (2011) Three-dimensional micro-level computational study of Wolffs law via trabecular bone remodeling in the human proximal femur using design space topology optimization. J Biomech 44:935–942CrossRef
38.
go back to reference Saber-Samandari S, Saber-Samandari S, Kiyazar S, Aghazadeh J, Sadeghi A (2016) In vitro evaluation for apatite-forming ability of cellulose-based nanocomposite scaffolds for bone tissue engineering. Int J Biol Macromol 86:434–442CrossRef Saber-Samandari S, Saber-Samandari S, Kiyazar S, Aghazadeh J, Sadeghi A (2016) In vitro evaluation for apatite-forming ability of cellulose-based nanocomposite scaffolds for bone tissue engineering. Int J Biol Macromol 86:434–442CrossRef
39.
go back to reference Vinceković M, Jalśenjak N, Topolovec-Pintarić S, Dermić E, Bujan M, Jurić S (2016) Encapsulation of biological and chemical agents for plant nutrition and protection: chitosan/alginate microcapsules loaded with copper cations and trichoderma viride. J Agric Food Chem 64:8073–8083CrossRef Vinceković M, Jalśenjak N, Topolovec-Pintarić S, Dermić E, Bujan M, Jurić S (2016) Encapsulation of biological and chemical agents for plant nutrition and protection: chitosan/alginate microcapsules loaded with copper cations and trichoderma viride. J Agric Food Chem 64:8073–8083CrossRef
40.
go back to reference Koutsopoulos S (2002) Synthesis and characterization of hydroxyapatite crystals: a review study on the analytical methods. J Biomed Mater Res 62:600–612CrossRef Koutsopoulos S (2002) Synthesis and characterization of hydroxyapatite crystals: a review study on the analytical methods. J Biomed Mater Res 62:600–612CrossRef
41.
go back to reference Bett JAS, Christner LG, Hall WK (1967) Hydrogen held by solids. XII. Hydroxyapatite catalysts. J Am Chem Soc 89:5535–5541CrossRef Bett JAS, Christner LG, Hall WK (1967) Hydrogen held by solids. XII. Hydroxyapatite catalysts. J Am Chem Soc 89:5535–5541CrossRef
42.
go back to reference Sibeko B, Choonara YE, du Toit LC, Modi G, Naidoo D, Khan RA, Kumar P, Ndesendo VMK, Iyuke SE, Pillay V (2012) Composite polylactic-methacrylic acid copolymer nanoparticles for the delivery of methotrexate. J Drug Deliv 2012:1–18CrossRef Sibeko B, Choonara YE, du Toit LC, Modi G, Naidoo D, Khan RA, Kumar P, Ndesendo VMK, Iyuke SE, Pillay V (2012) Composite polylactic-methacrylic acid copolymer nanoparticles for the delivery of methotrexate. J Drug Deliv 2012:1–18CrossRef
43.
go back to reference Kanasan N, Adzila S, Suid MS, Gurubaran P (2016) Preparation and characterization of hydroxyapatite/sodium alginate biocomposites for bone implant application. In: AIP conference proceedings 1756:020006-1 to 020006-1 Kanasan N, Adzila S, Suid MS, Gurubaran P (2016) Preparation and characterization of hydroxyapatite/sodium alginate biocomposites for bone implant application. In: AIP conference proceedings 1756:020006-1 to 020006-1
44.
go back to reference Antebi B, Cheng X, Harris JN, Gower LB, Chen X-D, Ling J (2013) Biomimetic collagen hydroxyapatite composite fabricated via a novel perfusion-flow mineralization technique. Tissue Eng Part C Methods 19:487–496CrossRef Antebi B, Cheng X, Harris JN, Gower LB, Chen X-D, Ling J (2013) Biomimetic collagen hydroxyapatite composite fabricated via a novel perfusion-flow mineralization technique. Tissue Eng Part C Methods 19:487–496CrossRef
45.
go back to reference Fonseca J (2012) Bone biology: from macrostructure to gene expression. Medicographia 34:142–148 Fonseca J (2012) Bone biology: from macrostructure to gene expression. Medicographia 34:142–148
46.
go back to reference Norman J, Shapter JG, Short K, Smith LJ, Fazzalari NL (2008) Micromechanical properties of human trabecular bone: a hierarchical investigation using nanoindentation. J Biomed Mater Res A 87A:196–202CrossRef Norman J, Shapter JG, Short K, Smith LJ, Fazzalari NL (2008) Micromechanical properties of human trabecular bone: a hierarchical investigation using nanoindentation. J Biomed Mater Res A 87A:196–202CrossRef
47.
go back to reference Hing KA (2004) Bone repair in the twenty-first century: biology, chemistry or engineering? Philos. Trans A Math Phys Eng Sci 362:2821–2850CrossRef Hing KA (2004) Bone repair in the twenty-first century: biology, chemistry or engineering? Philos. Trans A Math Phys Eng Sci 362:2821–2850CrossRef
48.
go back to reference Wagoner-Johnson AJ, Herschler BA (2011) A review of the mechanical behavior of CaP and CaP/polymer composites for applications in bone replacement and repair. Acta Biomater 7:16–30CrossRef Wagoner-Johnson AJ, Herschler BA (2011) A review of the mechanical behavior of CaP and CaP/polymer composites for applications in bone replacement and repair. Acta Biomater 7:16–30CrossRef
49.
go back to reference Brundavanam RK, Poinern GEJ, Fawcett D (2013) Modelling the crystal structure of a 30 nm sized particle based hydroxyapatite powder synthesised under the influence of ultrasound irradiation from X-ray powder diffraction data. Am J Mater Sci 3:84–90 Brundavanam RK, Poinern GEJ, Fawcett D (2013) Modelling the crystal structure of a 30 nm sized particle based hydroxyapatite powder synthesised under the influence of ultrasound irradiation from X-ray powder diffraction data. Am J Mater Sci 3:84–90
50.
go back to reference Maciel A, Presbtero G, Pia C, del Pilar Gutiérrez M, Guzmán J, Munguía N (2015) Pore cross-section area on predicting elastic properties of trabecular bovine bone for human implants. Biomed Mater Eng 25:9–23 Maciel A, Presbtero G, Pia C, del Pilar Gutiérrez M, Guzmán J, Munguía N (2015) Pore cross-section area on predicting elastic properties of trabecular bovine bone for human implants. Biomed Mater Eng 25:9–23
Metadata
Title
Polylactic acid/sodium alginate/hydroxyapatite composite scaffolds with trabecular tissue morphology designed by a bone remodeling model using 3D printing
Authors
I. Fernández-Cervantes
M. A. Morales
R. Agustín-Serrano
M. Cardenas-García
P. V. Pérez-Luna
B. L. Arroyo-Reyes
A. Maldonado-García
Publication date
22-03-2019
Publisher
Springer US
Published in
Journal of Materials Science / Issue 13/2019
Print ISSN: 0022-2461
Electronic ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-019-03537-1

Other articles of this Issue 13/2019

Journal of Materials Science 13/2019 Go to the issue

Premium Partners