Skip to main content
Top

2017 | OriginalPaper | Chapter

7. Polymer- and Carbon-Based Nanofibres for Energy Storage

Authors : Alexandra Ho, Suxi Wang, Xu Li, Haifei Zhang

Published in: Polymer-Engineered Nanostructures for Advanced Energy Applications

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

There is ever-increasing demand for energy worldwide. The constant use of energy particularly in portable devices and vehicles has required highly efficient and high-capacity energy storage. Materials research is at the front of addressing the society’s demand for energy storage. This chapter focuses on the fabrication and use of polymer and carbon-based nanofibers for energy storage. The widely used fabrication methods such as chemical vapour deposition, electrospinning and the recently developed methods including controlled freezing and gelation for nanofibers have been described. Upon the preparation of polymer nanofibers, carbon nanofibers can be produced by pyrolysis under inert atmosphere. We then review the applications of carbon-based nanofibers in different types of rechargeable batteries and supercapacitors. The chapter is completed with conclusion and outlook.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Denholm P, Ela E, Kirby B et al (2010) The role of energy storage with renewable electricity generation (Technical Report). National Renewable Energy Laboratory, Golden, pp 1–61CrossRef Denholm P, Ela E, Kirby B et al (2010) The role of energy storage with renewable electricity generation (Technical Report). National Renewable Energy Laboratory, Golden, pp 1–61CrossRef
2.
go back to reference Adeniran B, Mokaya R (2015) Low temperature synthesized carbon nanotube superstructures with superior CO2 and hydrogen storage capacity. J Mater Chem A 3(9):5148–5161CrossRef Adeniran B, Mokaya R (2015) Low temperature synthesized carbon nanotube superstructures with superior CO2 and hydrogen storage capacity. J Mater Chem A 3(9):5148–5161CrossRef
3.
go back to reference Cao D, Zhang X, Chen J et al (2003) Optimization of single-walled carbon nanotube arrays for methane storage at room temperature. J Phys Chem B 107(48):13286–13292CrossRef Cao D, Zhang X, Chen J et al (2003) Optimization of single-walled carbon nanotube arrays for methane storage at room temperature. J Phys Chem B 107(48):13286–13292CrossRef
4.
go back to reference Ahrens M, Kucera L, Larsonneur R (1996) Performance of a magnetically suspended flywheel energy storage device. IEEE T Contr Syst T 4(5):494–502CrossRef Ahrens M, Kucera L, Larsonneur R (1996) Performance of a magnetically suspended flywheel energy storage device. IEEE T Contr Syst T 4(5):494–502CrossRef
5.
go back to reference Bolund B, Bernhoff H, Leijon M (2007) Flywheel energy and power storage systems. Renew Sus Energy Rev 11(2):235–258CrossRef Bolund B, Bernhoff H, Leijon M (2007) Flywheel energy and power storage systems. Renew Sus Energy Rev 11(2):235–258CrossRef
6.
go back to reference Cha SI, Kim KT, Arshad SN et al (2005) Extraordinary strengthening effect of carbon nanotubes in metal-matrix nanocomposites processed by molecular-level mixing. Adv Mater 17(11):1377–1381CrossRef Cha SI, Kim KT, Arshad SN et al (2005) Extraordinary strengthening effect of carbon nanotubes in metal-matrix nanocomposites processed by molecular-level mixing. Adv Mater 17(11):1377–1381CrossRef
7.
go back to reference Nayfeh TH (2010) High strength composite materials and related processes. US Patent Application 20100203351 A1 Nayfeh TH (2010) High strength composite materials and related processes. US Patent Application 20100203351 A1
8.
go back to reference Winter M, Besenhard JO, Spahr ME et al (1998) Insertion electrode materials for rechargeable lithium batteries. Adv Mater 10(10):725–763CrossRef Winter M, Besenhard JO, Spahr ME et al (1998) Insertion electrode materials for rechargeable lithium batteries. Adv Mater 10(10):725–763CrossRef
9.
go back to reference Linden D, Reddy TB (2002) Handbook of batteries, 3rd edn. McGraw-Hill, New York Linden D, Reddy TB (2002) Handbook of batteries, 3rd edn. McGraw-Hill, New York
10.
go back to reference Notten P, Bergveld H, Kruijt W (2002) Battery management systems: design by modeling. Kluwer Academic Publisher, Norwell Notten P, Bergveld H, Kruijt W (2002) Battery management systems: design by modeling. Kluwer Academic Publisher, Norwell
11.
go back to reference Skotheim TA (ed) (1997) Handbook of conducting polymers. CRC Press, Baco Raton Skotheim TA (ed) (1997) Handbook of conducting polymers. CRC Press, Baco Raton
12.
go back to reference Mastragostino M, Arbizzani C, Soavi F (2001) Polymer-based supercapacitors. J Power Sources 97–98:812–815CrossRef Mastragostino M, Arbizzani C, Soavi F (2001) Polymer-based supercapacitors. J Power Sources 97–98:812–815CrossRef
13.
go back to reference Namisnyk AM (2003) A survey of electrochemical supercapacitor technology. University of Technology, Sydney Namisnyk AM (2003) A survey of electrochemical supercapacitor technology. University of Technology, Sydney
14.
go back to reference Buckles W, Hassenzahl WV (2000) Superconducting magnetic energy storage. IEEE Power Eng Rev 20(5):16–20CrossRef Buckles W, Hassenzahl WV (2000) Superconducting magnetic energy storage. IEEE Power Eng Rev 20(5):16–20CrossRef
15.
go back to reference Zhang LL, Zhao XS (2009) Carbon-based materials as supercapacitor electrodes. Chem Soc Rev 38(9):2520–2531CrossRef Zhang LL, Zhao XS (2009) Carbon-based materials as supercapacitor electrodes. Chem Soc Rev 38(9):2520–2531CrossRef
16.
go back to reference Wang Y, Xia Y (2013) Recent progress in supercapacitors: from materials design to system construction. Adv Mater 25(37):5336–5342CrossRef Wang Y, Xia Y (2013) Recent progress in supercapacitors: from materials design to system construction. Adv Mater 25(37):5336–5342CrossRef
17.
go back to reference Zhi M, Xiang C, Li J et al (2013) Nanostructured carbon-metal oxide composite electrodes for supercapacitors: a review. Nanoscale 5(1):72–88CrossRef Zhi M, Xiang C, Li J et al (2013) Nanostructured carbon-metal oxide composite electrodes for supercapacitors: a review. Nanoscale 5(1):72–88CrossRef
18.
go back to reference Feng L, Xie N, Zhong J (2014) Carbon nanofibers and their composites: a review of synthesizing, properties and applications. Materials 7(5):3919–3945CrossRef Feng L, Xie N, Zhong J (2014) Carbon nanofibers and their composites: a review of synthesizing, properties and applications. Materials 7(5):3919–3945CrossRef
19.
go back to reference Shokrieh MM, Esmkhani M, Haghighatkhah AR (2014) Flexural fatigue behaviour of carbon nanofiber/epoxy nanocomposites. Fatigue Fract Eng M 37(5):553–560CrossRef Shokrieh MM, Esmkhani M, Haghighatkhah AR (2014) Flexural fatigue behaviour of carbon nanofiber/epoxy nanocomposites. Fatigue Fract Eng M 37(5):553–560CrossRef
20.
go back to reference Cao J, Wang Y, Zhou Y et al (2013) High voltage asymmetric supercapacitor based on MnO2 and graphene electrodes. J Electroanal Chem 689:201–206CrossRef Cao J, Wang Y, Zhou Y et al (2013) High voltage asymmetric supercapacitor based on MnO2 and graphene electrodes. J Electroanal Chem 689:201–206CrossRef
21.
go back to reference Fan Z, Yan J, Wei T et al (2011) Asymmetric Supercapacitors Based on Graphene/MnO2 and activated carbon nanofiber electrodes with high power and energy density. Adv Funct Mater 21(12):2366–2375CrossRef Fan Z, Yan J, Wei T et al (2011) Asymmetric Supercapacitors Based on Graphene/MnO2 and activated carbon nanofiber electrodes with high power and energy density. Adv Funct Mater 21(12):2366–2375CrossRef
22.
go back to reference Liu X, Roberts A, Ahmed A et al (2015) Carbon nanofibers by pyrolysis of self-assembled perylene diimide derivative gels as supercapacitor electrode materials. J Mater Chem A 3(30):15513–15522CrossRef Liu X, Roberts A, Ahmed A et al (2015) Carbon nanofibers by pyrolysis of self-assembled perylene diimide derivative gels as supercapacitor electrode materials. J Mater Chem A 3(30):15513–15522CrossRef
23.
go back to reference Śliwak A, Gryglewicz G (2014) High-voltage asymmetric supercapacitors based on carbon and manganese oxide/oxidized carbon nanofiber composite electrodes. Energy Technol 2(9–10):819–824CrossRef Śliwak A, Gryglewicz G (2014) High-voltage asymmetric supercapacitors based on carbon and manganese oxide/oxidized carbon nanofiber composite electrodes. Energy Technol 2(9–10):819–824CrossRef
24.
go back to reference De Jong KP, Geus JW (2000) Carbon nanofibers: catalytic synthesis and applications. Catal Rev 42(4):481–510CrossRef De Jong KP, Geus JW (2000) Carbon nanofibers: catalytic synthesis and applications. Catal Rev 42(4):481–510CrossRef
25.
go back to reference Zhang L, Aboagye A, Kelkar A et al (2013) A review: carbon nanofibers from electrospun polyacrylonitrile and their applications. J Mater Sci 49(2):463–480CrossRef Zhang L, Aboagye A, Kelkar A et al (2013) A review: carbon nanofibers from electrospun polyacrylonitrile and their applications. J Mater Sci 49(2):463–480CrossRef
26.
go back to reference Li W, Zhang F, Dou Y et al (2011) A self-template strategy for the synthesis of mesoporous carbon nanofibers as advanced supercapacitor electrodes. Adv Energy Mater 1(3):382–386CrossRef Li W, Zhang F, Dou Y et al (2011) A self-template strategy for the synthesis of mesoporous carbon nanofibers as advanced supercapacitor electrodes. Adv Energy Mater 1(3):382–386CrossRef
27.
go back to reference Roberts AD, Wang S, Li X et al (2014) Hierarchical porous nitrogen-rich carbon monoliths via ice-templating: high capacity and high-rate performance as lithium-ion battery anode materials. J Mater Chem A 2(42):17787–17796CrossRef Roberts AD, Wang S, Li X et al (2014) Hierarchical porous nitrogen-rich carbon monoliths via ice-templating: high capacity and high-rate performance as lithium-ion battery anode materials. J Mater Chem A 2(42):17787–17796CrossRef
28.
go back to reference Xu G, Han J, Ding B et al (2015) Biomass-derived porous carbon materials with sulfur and nitrogen dual-doping for energy storage. Green Chem 17(3):1668–1674CrossRef Xu G, Han J, Ding B et al (2015) Biomass-derived porous carbon materials with sulfur and nitrogen dual-doping for energy storage. Green Chem 17(3):1668–1674CrossRef
29.
go back to reference Allen MJ, Tung VC, Kaner RB (2010) Honeycomb carbon: a review of graphene. Chem Rev 110(1):132–145CrossRef Allen MJ, Tung VC, Kaner RB (2010) Honeycomb carbon: a review of graphene. Chem Rev 110(1):132–145CrossRef
30.
go back to reference Hughes TYC, Chambers CR (1889) Manufacture of Carbon Filaments. US Patent 405480 Hughes TYC, Chambers CR (1889) Manufacture of Carbon Filaments. US Patent 405480
31.
go back to reference Radushkevich LV, Lukyanovich VM (1952) O Strukture ugleroda, obrazujucegosja pri termiceskom razlozenii okisi ugleroda na zeleznom kontakte. Russ J Phys Chem 26:88–95 Radushkevich LV, Lukyanovich VM (1952) O Strukture ugleroda, obrazujucegosja pri termiceskom razlozenii okisi ugleroda na zeleznom kontakte. Russ J Phys Chem 26:88–95
32.
go back to reference Kroto HW, Heath JR, O’Brien SC et al (1985) C 60: buckminsterfullerene. Nature 318(6042):162–163CrossRef Kroto HW, Heath JR, O’Brien SC et al (1985) C 60: buckminsterfullerene. Nature 318(6042):162–163CrossRef
33.
go back to reference Iijima S, Ichihashi T (1993) Single-shell carbon nanotubes of 1-nm diameter. Nature 363(6430):603–605CrossRef Iijima S, Ichihashi T (1993) Single-shell carbon nanotubes of 1-nm diameter. Nature 363(6430):603–605CrossRef
34.
go back to reference Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354(6348):56–58CrossRef Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354(6348):56–58CrossRef
35.
go back to reference Bethune DS, Johnson RD, Salem JR et al (1993) Atoms in carbon cages: the structure and properties of endohedral fullerenes. Nature 366(6451):123–128CrossRef Bethune DS, Johnson RD, Salem JR et al (1993) Atoms in carbon cages: the structure and properties of endohedral fullerenes. Nature 366(6451):123–128CrossRef
36.
go back to reference Baker RTK, Harris PS, Thomas RB et al (1973) Formation of filamentous carbon from iron, cobalt and chromium catalyzed decomposition of acetylene. J Catal 30(1):86–95CrossRef Baker RTK, Harris PS, Thomas RB et al (1973) Formation of filamentous carbon from iron, cobalt and chromium catalyzed decomposition of acetylene. J Catal 30(1):86–95CrossRef
37.
go back to reference Baker RTK, Barber MA, Harris PS et al (1972) Nucleation and growth of carbon deposits from the nickel catalyzed decomposition of acetylene. J Catal 26(1):51–62CrossRef Baker RTK, Barber MA, Harris PS et al (1972) Nucleation and growth of carbon deposits from the nickel catalyzed decomposition of acetylene. J Catal 26(1):51–62CrossRef
38.
go back to reference Melechko AV, Merkulov VI, McKnight TE et al (2005) Vertically aligned carbon nanofibers and related structures: controlled synthesis and directed assembly. J Appl Phys 97(4):041301CrossRef Melechko AV, Merkulov VI, McKnight TE et al (2005) Vertically aligned carbon nanofibers and related structures: controlled synthesis and directed assembly. J Appl Phys 97(4):041301CrossRef
39.
go back to reference Faccini M, Borja G, Boerrigter M et al (2015) Electrospun carbon nanofiber membranes for filtration of nanoparticles from water. J Nanomater 2015:1–9CrossRef Faccini M, Borja G, Boerrigter M et al (2015) Electrospun carbon nanofiber membranes for filtration of nanoparticles from water. J Nanomater 2015:1–9CrossRef
40.
go back to reference Aravindan V, Sundaramurthy J, Suresh Kumar P et al (2015) Electrospun nanofibers: a prospective electro-active material for constructing high performance Li-ion batteries. Chem Commun 51(12):2225–2234CrossRef Aravindan V, Sundaramurthy J, Suresh Kumar P et al (2015) Electrospun nanofibers: a prospective electro-active material for constructing high performance Li-ion batteries. Chem Commun 51(12):2225–2234CrossRef
41.
go back to reference Lee BS, Yang HS, Yu WR (2014) Fabrication of double-tubular carbon nanofibers using quadruple coaxial electrospinning. Nanotechnology 25(46):465602CrossRef Lee BS, Yang HS, Yu WR (2014) Fabrication of double-tubular carbon nanofibers using quadruple coaxial electrospinning. Nanotechnology 25(46):465602CrossRef
42.
go back to reference Li WL, Lu K, Walz JY (2012) Freeze casting of porous materials: review of critical factors in microstructure evolution. Int Mater Rev 57(1):37–60CrossRef Li WL, Lu K, Walz JY (2012) Freeze casting of porous materials: review of critical factors in microstructure evolution. Int Mater Rev 57(1):37–60CrossRef
43.
go back to reference Samitsu S, Zhang R, Peng X et al (2013) Flash freezing route to mesoporous polymer nanofibre networks. Nat Commun 4:2653CrossRef Samitsu S, Zhang R, Peng X et al (2013) Flash freezing route to mesoporous polymer nanofibre networks. Nat Commun 4:2653CrossRef
44.
go back to reference Liu X, Ahmed A, Wang Z et al (2015) Nanofibrous microspheres via emulsion gelation and carbonization. Chem Commun 51(94):16864–16867CrossRef Liu X, Ahmed A, Wang Z et al (2015) Nanofibrous microspheres via emulsion gelation and carbonization. Chem Commun 51(94):16864–16867CrossRef
45.
go back to reference Choy KL (2003) Chemical vapour deposition of coatings. Prog Mater Sci 48(2):57–170CrossRef Choy KL (2003) Chemical vapour deposition of coatings. Prog Mater Sci 48(2):57–170CrossRef
46.
go back to reference Wan Y, Yang Z, Xiong G et al (2015) Anchoring Fe3O4 nanoparticles on three-dimensional carbon nanofibers toward flexible high-performance anodes for lithium-ion batteries. J Power Sources 294:414–419CrossRef Wan Y, Yang Z, Xiong G et al (2015) Anchoring Fe3O4 nanoparticles on three-dimensional carbon nanofibers toward flexible high-performance anodes for lithium-ion batteries. J Power Sources 294:414–419CrossRef
47.
go back to reference Bhardwaj N, Kundu SC (2010) Electrospinning: a fascinating fiber fabrication technique. Biotechnol Adv 28(3):325–347CrossRef Bhardwaj N, Kundu SC (2010) Electrospinning: a fascinating fiber fabrication technique. Biotechnol Adv 28(3):325–347CrossRef
48.
go back to reference Formhals A (1934) Process and apparatus for preparing artificial threads. US Patent 1975504A Formhals A (1934) Process and apparatus for preparing artificial threads. US Patent 1975504A
49.
go back to reference Chang C, Limkrailassiri K, Lin L (2008) Continuous near-field electrospinning for large area deposition of orderly nanofiber patterns. Appl Phys Lett 93(12):123111CrossRef Chang C, Limkrailassiri K, Lin L (2008) Continuous near-field electrospinning for large area deposition of orderly nanofiber patterns. Appl Phys Lett 93(12):123111CrossRef
50.
go back to reference Li Z, Wang C (2013) Effects of working parameters on electrospinning. One-dimensional nanostructures. Springer, Berlin Heidelberg, pp 15–28 Li Z, Wang C (2013) Effects of working parameters on electrospinning. One-dimensional nanostructures. Springer, Berlin Heidelberg, pp 15–28
51.
go back to reference Subbiah T, Bhat GS, Tock RW et al (2005) Electrospinning of nanofibers. J Appl Polym Sci 96(2):557–569CrossRef Subbiah T, Bhat GS, Tock RW et al (2005) Electrospinning of nanofibers. J Appl Polym Sci 96(2):557–569CrossRef
52.
go back to reference Shin YM, Hohman MM, Brenner MP et al (2001) Experimental characterization of electrospinning: the electrically forced jet and instabilities. Polymer 42(25):09955–09967CrossRef Shin YM, Hohman MM, Brenner MP et al (2001) Experimental characterization of electrospinning: the electrically forced jet and instabilities. Polymer 42(25):09955–09967CrossRef
53.
go back to reference Deitzel JM, Kleinmeyer J, Harris D et al (2001) The effect of processing variables on the morphology of electrospun nanofibers and textiles. Polymer 42(1):261–272CrossRef Deitzel JM, Kleinmeyer J, Harris D et al (2001) The effect of processing variables on the morphology of electrospun nanofibers and textiles. Polymer 42(1):261–272CrossRef
54.
go back to reference Qin X-H, Yang E-L, Li N et al (2007) Effect of different salts on electrospinning of polyacrylonitrile (PAN) polymer solution. J Appl Polym Sci 103(6):3865–3870CrossRef Qin X-H, Yang E-L, Li N et al (2007) Effect of different salts on electrospinning of polyacrylonitrile (PAN) polymer solution. J Appl Polym Sci 103(6):3865–3870CrossRef
55.
go back to reference McCann JT, Marquez M, Xia Y (2006) Highly porous fibers by electrospinning into a cryogenic liquid. J Am Chem Soc 128(5):1436–1437CrossRef McCann JT, Marquez M, Xia Y (2006) Highly porous fibers by electrospinning into a cryogenic liquid. J Am Chem Soc 128(5):1436–1437CrossRef
56.
go back to reference Xiong X, Luo W, Hu X et al (2015) Flexible membranes of MoS2/C nanofibers by electrospinning as binder-free anodes for high-performance sodium-ion batteries. Sci Rep 5:9254CrossRef Xiong X, Luo W, Hu X et al (2015) Flexible membranes of MoS2/C nanofibers by electrospinning as binder-free anodes for high-performance sodium-ion batteries. Sci Rep 5:9254CrossRef
57.
go back to reference Zhi M, Manivannan A, Meng F et al (2012) Highly conductive electrospun carbon nanofiber/MnO2 coaxial nano-cables for high energy and power density supercapacitors. J Power Sources 208:345–353CrossRef Zhi M, Manivannan A, Meng F et al (2012) Highly conductive electrospun carbon nanofiber/MnO2 coaxial nano-cables for high energy and power density supercapacitors. J Power Sources 208:345–353CrossRef
58.
go back to reference Liu H, Bai JIE, Wang QI et al (2014) Preparation and characterization of silver nanoparticles/carbon nanofibers via electrospinning with research on their catalytic properties. NANO 09(03):1450041CrossRef Liu H, Bai JIE, Wang QI et al (2014) Preparation and characterization of silver nanoparticles/carbon nanofibers via electrospinning with research on their catalytic properties. NANO 09(03):1450041CrossRef
59.
go back to reference Savva I, Kalogirou AS, Chatzinicolaou A et al (2014) PVP-crosslinked electrospun membranes with embedded Pd and Cu2O nanoparticles as effective heterogeneous catalytic supports. RSC Adv 4(85):44911–44921CrossRef Savva I, Kalogirou AS, Chatzinicolaou A et al (2014) PVP-crosslinked electrospun membranes with embedded Pd and Cu2O nanoparticles as effective heterogeneous catalytic supports. RSC Adv 4(85):44911–44921CrossRef
60.
go back to reference Wang S-X, Yap CC, He J et al (2016) Electrospinning: a facile technique for fabricating functional nanofibers for environmental applications. Nanotechnol Rev 5(1):51–73 Wang S-X, Yap CC, He J et al (2016) Electrospinning: a facile technique for fabricating functional nanofibers for environmental applications. Nanotechnol Rev 5(1):51–73
61.
go back to reference Cavaliere S, Subianto S, Savych I et al (2011) Electrospinning: designed architectures for energy conversion and storage devices. Energy Environ Sci 4(12):4761–4785CrossRef Cavaliere S, Subianto S, Savych I et al (2011) Electrospinning: designed architectures for energy conversion and storage devices. Energy Environ Sci 4(12):4761–4785CrossRef
62.
go back to reference Mao X, Hatton TA, Rutledge GC (2013) A review of electrospun carbon fibers as electrode materials for energy storage. Curr Org Chem 17(13):1390–1401CrossRef Mao X, Hatton TA, Rutledge GC (2013) A review of electrospun carbon fibers as electrode materials for energy storage. Curr Org Chem 17(13):1390–1401CrossRef
63.
go back to reference Kim B-H, Bui N-N, Yang K-S et al (2009) Electrochemical properties of activated polyacrylonitrile/pitch carbon fibers produced using electrospinning. B Kor Chem Soc 30(9):1967–1972CrossRef Kim B-H, Bui N-N, Yang K-S et al (2009) Electrochemical properties of activated polyacrylonitrile/pitch carbon fibers produced using electrospinning. B Kor Chem Soc 30(9):1967–1972CrossRef
64.
go back to reference Qiu Y, Yu J, Shi T et al (2011) Nitrogen-doped ultrathin carbon nanofibers derived from electrospinning: large-scale production, unique structure, and application as electrocatalysts for oxygen reduction. J Power Sources 196(23):9862–9867CrossRef Qiu Y, Yu J, Shi T et al (2011) Nitrogen-doped ultrathin carbon nanofibers derived from electrospinning: large-scale production, unique structure, and application as electrocatalysts for oxygen reduction. J Power Sources 196(23):9862–9867CrossRef
65.
go back to reference Hwang TH, Lee YM, Kong B-S et al (2012) Electrospun core-shell fibers for robust silicon nanoparticle-based lithium ion battery anodes. Nano Lett 12(2):802–807CrossRef Hwang TH, Lee YM, Kong B-S et al (2012) Electrospun core-shell fibers for robust silicon nanoparticle-based lithium ion battery anodes. Nano Lett 12(2):802–807CrossRef
66.
go back to reference Kong J, Tan HR, Tan SY et al (2010) A generic approach for preparing core-shell carbon-metal oxide nanofibers: morphological evolution and its mechanism. Chem Commun 46(46):8773–8775CrossRef Kong J, Tan HR, Tan SY et al (2010) A generic approach for preparing core-shell carbon-metal oxide nanofibers: morphological evolution and its mechanism. Chem Commun 46(46):8773–8775CrossRef
67.
go back to reference Kong J, Liu Z, Yang Z et al (2012) Carbon/SnO2/carbon core/shell/shell hybrid nanofibers: tailored nanostructure for the anode of lithium ion batteries with high reversibility and rate capacity. Nanoscale 4(2):525–530CrossRef Kong J, Liu Z, Yang Z et al (2012) Carbon/SnO2/carbon core/shell/shell hybrid nanofibers: tailored nanostructure for the anode of lithium ion batteries with high reversibility and rate capacity. Nanoscale 4(2):525–530CrossRef
68.
go back to reference Park S-H, Kim B-K, Lee W-J (2013) Electrospun activated carbon nanofibers with hollow core/highly mesoporous shell structure as counter electrodes for dye-sensitized solar cells. J Power Sources 239:122–127CrossRef Park S-H, Kim B-K, Lee W-J (2013) Electrospun activated carbon nanofibers with hollow core/highly mesoporous shell structure as counter electrodes for dye-sensitized solar cells. J Power Sources 239:122–127CrossRef
69.
go back to reference Yu Y, Gu L, Wang C et al (2009) Encapsulation of Sn@carbon nanoparticles in bamboo-like hollow carbon nanofibers as an anode material in lithium-based batteries. Angew Chem Int Ed 48(35):6485–6489CrossRef Yu Y, Gu L, Wang C et al (2009) Encapsulation of Sn@carbon nanoparticles in bamboo-like hollow carbon nanofibers as an anode material in lithium-based batteries. Angew Chem Int Ed 48(35):6485–6489CrossRef
70.
go back to reference Wang H, Zhang C, Chen Z et al (2015) Large-scale synthesis of ordered mesoporous carbon fiber and its application as cathode material for lithium-sulfur batteries. Carbon 81:782–787CrossRef Wang H, Zhang C, Chen Z et al (2015) Large-scale synthesis of ordered mesoporous carbon fiber and its application as cathode material for lithium-sulfur batteries. Carbon 81:782–787CrossRef
71.
go back to reference Wang S-X, Yang L, Stubbs LP et al (2013) Lignin-derived fused electrospun carbon fibrous mats as high performance anode materials for lithium ion batteries. ACS Appl Mater Interfaces 5(23):12275–12282CrossRef Wang S-X, Yang L, Stubbs LP et al (2013) Lignin-derived fused electrospun carbon fibrous mats as high performance anode materials for lithium ion batteries. ACS Appl Mater Interfaces 5(23):12275–12282CrossRef
72.
go back to reference Gutiérrez MC, Ferrer ML, del Monte F (2008) Ice-templated materials: sophisticated structures exhibiting enhanced functionalities obtained after unidirectional freezing and ice-segregation-induced self-assembly. Chem Mater 20(3):634–648CrossRef Gutiérrez MC, Ferrer ML, del Monte F (2008) Ice-templated materials: sophisticated structures exhibiting enhanced functionalities obtained after unidirectional freezing and ice-segregation-induced self-assembly. Chem Mater 20(3):634–648CrossRef
73.
go back to reference Qian L, Zhang H (2011) Controlled freezing and freeze drying: a versatile route for porous and micro-/nano-structured materials. J Chem Technol Biotechnol 86(2):172–184CrossRef Qian L, Zhang H (2011) Controlled freezing and freeze drying: a versatile route for porous and micro-/nano-structured materials. J Chem Technol Biotechnol 86(2):172–184CrossRef
74.
go back to reference Zhang H, Cooper AI (2007) Aligned porous structures by directional freezing. Adv Mater 19(11):1529–1533CrossRef Zhang H, Cooper AI (2007) Aligned porous structures by directional freezing. Adv Mater 19(11):1529–1533CrossRef
75.
go back to reference Zhang H, Hussain I, Brust M et al (2005) Aligned two-and three-dimensional structures by directional freezing of polymers and nanoparticles. Nat Mater 4(10):787–793CrossRef Zhang H, Hussain I, Brust M et al (2005) Aligned two-and three-dimensional structures by directional freezing of polymers and nanoparticles. Nat Mater 4(10):787–793CrossRef
76.
go back to reference Wais U, Jackson AW, He T et al (2016) Nanoformulation and encapsulation approaches for poorly water-soluble drug nanoparticles. Nanoscale 8(4):1746–1769CrossRef Wais U, Jackson AW, He T et al (2016) Nanoformulation and encapsulation approaches for poorly water-soluble drug nanoparticles. Nanoscale 8(4):1746–1769CrossRef
77.
go back to reference Qian L, Ahmed A, Foster A et al (2009) Systematic tuning of pore morphologies and pore volumes in macroporous materials by freezing. J Mater Chem 19(29):5212–5219CrossRef Qian L, Ahmed A, Foster A et al (2009) Systematic tuning of pore morphologies and pore volumes in macroporous materials by freezing. J Mater Chem 19(29):5212–5219CrossRef
78.
go back to reference Zhang H, Wang D, Butler R et al (2008) Formation and enhanced biocidal activity of water-dispersable organic nanoparticles. Nat Nanotechnol 3(8):506–511CrossRef Zhang H, Wang D, Butler R et al (2008) Formation and enhanced biocidal activity of water-dispersable organic nanoparticles. Nat Nanotechnol 3(8):506–511CrossRef
79.
go back to reference Qian L, Willneff E, Zhang H (2009) A novel route to polymeric sub-micron fibers and their use as templates for inorganic structures. Chem Commun 26:3946–3948CrossRef Qian L, Willneff E, Zhang H (2009) A novel route to polymeric sub-micron fibers and their use as templates for inorganic structures. Chem Commun 26:3946–3948CrossRef
80.
go back to reference Qian L, Zhang H (2010) Green synthesis of chitosan-based nanofibers and their applications. Green Chem 12(7):1207–1214CrossRef Qian L, Zhang H (2010) Green synthesis of chitosan-based nanofibers and their applications. Green Chem 12(7):1207–1214CrossRef
81.
go back to reference Ahmed A, Hearn J, Abdelmagid W et al (2012) Dual-tuned drug release by nanofibrous scaffolds of chitosan and mesoporous silica microspheres. J Mater Chem 22(48):25027–25035CrossRef Ahmed A, Hearn J, Abdelmagid W et al (2012) Dual-tuned drug release by nanofibrous scaffolds of chitosan and mesoporous silica microspheres. J Mater Chem 22(48):25027–25035CrossRef
82.
go back to reference Zhang H, Lee JY, Ahmed A et al (2008) Freeze-align and heat-fuse: microwires and networks from nanoparticle suspensions. Angew Chem Int Ed 47(24):4573–4576CrossRef Zhang H, Lee JY, Ahmed A et al (2008) Freeze-align and heat-fuse: microwires and networks from nanoparticle suspensions. Angew Chem Int Ed 47(24):4573–4576CrossRef
83.
go back to reference Shi Q, An Z, Tsung CK et al (2007) Ice-templating of core/shell microgel fibers through ‘bricks-and-mortar’ assembly. Adv Mater 19(24):4539–4543CrossRef Shi Q, An Z, Tsung CK et al (2007) Ice-templating of core/shell microgel fibers through ‘bricks-and-mortar’ assembly. Adv Mater 19(24):4539–4543CrossRef
84.
go back to reference Shi Q, Liang H, Feng D et al (2008) Porous carbon and carbon/metal oxide microfibers with well-controlled pore structure and interface. J Am Chem Soc 130(15):5034–5035CrossRef Shi Q, Liang H, Feng D et al (2008) Porous carbon and carbon/metal oxide microfibers with well-controlled pore structure and interface. J Am Chem Soc 130(15):5034–5035CrossRef
85.
go back to reference Mao Q, Shi S, Wang H (2015) Biomimetic nanowire structured hydrogels as highly active and recyclable catalyst carriers. ACS Sustain Chem Eng 3(9):1915–1924CrossRef Mao Q, Shi S, Wang H (2015) Biomimetic nanowire structured hydrogels as highly active and recyclable catalyst carriers. ACS Sustain Chem Eng 3(9):1915–1924CrossRef
86.
go back to reference Spender J, Demers AL, Xie X et al (2012) Method for production of polymer and carbon nanofibers from water-soluble polymers. Nano Lett 12(7):3857–3860CrossRef Spender J, Demers AL, Xie X et al (2012) Method for production of polymer and carbon nanofibers from water-soluble polymers. Nano Lett 12(7):3857–3860CrossRef
87.
go back to reference Sweetman LJ, Moulton SE, Wallace GG (2008) Characterisation of porous freeze dried conducting carbon nanotube-chitosan scaffolds. J Mater Chem 18(44):5417–5422CrossRef Sweetman LJ, Moulton SE, Wallace GG (2008) Characterisation of porous freeze dried conducting carbon nanotube-chitosan scaffolds. J Mater Chem 18(44):5417–5422CrossRef
88.
go back to reference Ferry JD (1980) Viscoelastic properties of polymers, 3rd edn. Wiley, New York Ferry JD (1980) Viscoelastic properties of polymers, 3rd edn. Wiley, New York
89.
go back to reference Yamamoto T, Nishimura T, Suzuki T et al (2001) Control of mesoporosity of carbon gels prepared by sol-gel polycondensation and freeze drying. J Non-Cryst Solids 288(1–3):46–55CrossRef Yamamoto T, Nishimura T, Suzuki T et al (2001) Control of mesoporosity of carbon gels prepared by sol-gel polycondensation and freeze drying. J Non-Cryst Solids 288(1–3):46–55CrossRef
90.
go back to reference Qie L, Chen W-M, Wang Z-H et al (2012) Nitrogen-doped porous carbon nanofiber webs as anodes for lithium ion batteries with a superhigh capacity and rate capability. Adv Mater 24(15):2047–2050CrossRef Qie L, Chen W-M, Wang Z-H et al (2012) Nitrogen-doped porous carbon nanofiber webs as anodes for lithium ion batteries with a superhigh capacity and rate capability. Adv Mater 24(15):2047–2050CrossRef
91.
go back to reference Cho JS, Hong YJ, Kang YC (2015) Design and synthesis of bubble-nanorod-structured Fe2O3-carbon nanofibers as advanced anode material for Li-Ion batteries. ACS Nano 9(4):4026–4035CrossRef Cho JS, Hong YJ, Kang YC (2015) Design and synthesis of bubble-nanorod-structured Fe2O3-carbon nanofibers as advanced anode material for Li-Ion batteries. ACS Nano 9(4):4026–4035CrossRef
92.
go back to reference Song MJ, Kim IT, Kim YB et al (2015) Self-standing, binder-free electrospun Co3O4/carbon nanofiber composites for non-aqueous Li-air batteries. Electrochim Acta 182:289–296CrossRef Song MJ, Kim IT, Kim YB et al (2015) Self-standing, binder-free electrospun Co3O4/carbon nanofiber composites for non-aqueous Li-air batteries. Electrochim Acta 182:289–296CrossRef
93.
go back to reference Nie H, Xu C, Zhou W et al (2016) Free-standing thin webs of activated carbon nanofibers by electrospinning for rechargeable Li-O2 batteries. ACS Appl Mater Interfaces 8(3):1937–1942CrossRef Nie H, Xu C, Zhou W et al (2016) Free-standing thin webs of activated carbon nanofibers by electrospinning for rechargeable Li-O2 batteries. ACS Appl Mater Interfaces 8(3):1937–1942CrossRef
94.
go back to reference Singhal R, Chung S-H, Manthiram A et al (2015) A free-standing carbon nanofiber interlayer for high-performance lithium-sulfur batteries. J Mater Chem A 3(8):4530–4538CrossRef Singhal R, Chung S-H, Manthiram A et al (2015) A free-standing carbon nanofiber interlayer for high-performance lithium-sulfur batteries. J Mater Chem A 3(8):4530–4538CrossRef
95.
go back to reference Bai Y, Wang Z, Wu C et al (2015) Hard carbon originated from polyvinyl chloride nanofibers as high-performance anode material for Na-ion battery. ACS Appl Mater Interfaces 7(9):5598–5604CrossRef Bai Y, Wang Z, Wu C et al (2015) Hard carbon originated from polyvinyl chloride nanofibers as high-performance anode material for Na-ion battery. ACS Appl Mater Interfaces 7(9):5598–5604CrossRef
96.
go back to reference Xu G, Ding B, Pan J et al (2015) Porous nitrogen and phosphorus co-doped carbon nanofiber networks for high performance electrical double layer capacitors. J Mater Chem A 3(46):23268–23273CrossRef Xu G, Ding B, Pan J et al (2015) Porous nitrogen and phosphorus co-doped carbon nanofiber networks for high performance electrical double layer capacitors. J Mater Chem A 3(46):23268–23273CrossRef
97.
go back to reference Abouali S, Akbari Garakani M, Zhang B et al (2015) Electrospun carbon nanofibers with in situ encapsulated Co3O4 nanoparticles as electrodes for high-performance supercapacitors. ACS Appl Mater Interfaces 7(24):13503–13511CrossRef Abouali S, Akbari Garakani M, Zhang B et al (2015) Electrospun carbon nanofibers with in situ encapsulated Co3O4 nanoparticles as electrodes for high-performance supercapacitors. ACS Appl Mater Interfaces 7(24):13503–13511CrossRef
98.
go back to reference Li L, Peng S, Wu HB et al (2015) A flexible quasi-solid-state asymmetric electrochemical capacitor based on hierarchical porous V2O5 nanosheets on carbon nanofibers. Adv Energy Mater 5(17):1500753 Li L, Peng S, Wu HB et al (2015) A flexible quasi-solid-state asymmetric electrochemical capacitor based on hierarchical porous V2O5 nanosheets on carbon nanofibers. Adv Energy Mater 5(17):1500753
99.
go back to reference Li M, Liu F, Cheng JP et al (2015) Enhanced performance of nickel-aluminum layered double hydroxide nanosheets/carbon nanotubes composite for supercapacitor and asymmetric capacitor. J Alloys Comp 635:225–232CrossRef Li M, Liu F, Cheng JP et al (2015) Enhanced performance of nickel-aluminum layered double hydroxide nanosheets/carbon nanotubes composite for supercapacitor and asymmetric capacitor. J Alloys Comp 635:225–232CrossRef
100.
go back to reference Dan P, Mengeritski E, Geronov Y et al (1995) Performances and safety behaviour of rechargeable AA-size Li/LixMnO2 cell. J Power Sources 54(1):143–145CrossRef Dan P, Mengeritski E, Geronov Y et al (1995) Performances and safety behaviour of rechargeable AA-size Li/LixMnO2 cell. J Power Sources 54(1):143–145CrossRef
101.
go back to reference Etacheri V, Marom R, Elazari R et al (2011) Challenges in the development of advanced Li-ion batteries: a review. Energy Environ Sci 4(9):3243–3262CrossRef Etacheri V, Marom R, Elazari R et al (2011) Challenges in the development of advanced Li-ion batteries: a review. Energy Environ Sci 4(9):3243–3262CrossRef
102.
go back to reference Gabano J-P (1983) Lithium batteries. Academic Press, London Gabano J-P (1983) Lithium batteries. Academic Press, London
103.
go back to reference Nazri G-A, Pistoia G (2008) Lithium batteries: science and technology. Springer Science & Business Media, Germany Nazri G-A, Pistoia G (2008) Lithium batteries: science and technology. Springer Science & Business Media, Germany
104.
go back to reference Wu Y, Wang J, Jiang K et al (2013) Applications of carbon nanotubes in high performance lithium ion batteries. Front Phys 9(3):351–369CrossRef Wu Y, Wang J, Jiang K et al (2013) Applications of carbon nanotubes in high performance lithium ion batteries. Front Phys 9(3):351–369CrossRef
105.
go back to reference Christensen J, Albertus P, Sanchez-Carrera RS et al (2011) A critical review of li/air batteries. J Electrochem Soc 159(2):R1–R30CrossRef Christensen J, Albertus P, Sanchez-Carrera RS et al (2011) A critical review of li/air batteries. J Electrochem Soc 159(2):R1–R30CrossRef
106.
go back to reference Peng B, Chen J (2009) Functional materials with high-efficiency energy storage and conversion for batteries and fuel cells. Coordin Chem Rev 253(23–24):2805–2813CrossRef Peng B, Chen J (2009) Functional materials with high-efficiency energy storage and conversion for batteries and fuel cells. Coordin Chem Rev 253(23–24):2805–2813CrossRef
107.
go back to reference Ma Z, Yuan X, Li L et al (2015) A review of cathode materials and structures for rechargeable lithium-air batteries. Energy Environ Sci 8(8):2144–2198CrossRef Ma Z, Yuan X, Li L et al (2015) A review of cathode materials and structures for rechargeable lithium-air batteries. Energy Environ Sci 8(8):2144–2198CrossRef
108.
go back to reference Yuan J, Yu J-S, Sundén B (2015) Review on mechanisms and continuum models of multi-phase transport phenomena in porous structures of non-aqueous Li-Air batteries. J Power Sources 278:352–369CrossRef Yuan J, Yu J-S, Sundén B (2015) Review on mechanisms and continuum models of multi-phase transport phenomena in porous structures of non-aqueous Li-Air batteries. J Power Sources 278:352–369CrossRef
109.
go back to reference Girishkumar G, McCloskey B, Luntz AC et al (2010) Lithium-air battery: promise and challenges. J Phys Chem Lett 1(14):2193–2203CrossRef Girishkumar G, McCloskey B, Luntz AC et al (2010) Lithium-air battery: promise and challenges. J Phys Chem Lett 1(14):2193–2203CrossRef
110.
go back to reference Bruce PG, Freunberger SA, Hardwick LJ et al (2012) Li-O2 and Li-S batteries with high energy storage. Nat Mater 11(1):19–29CrossRef Bruce PG, Freunberger SA, Hardwick LJ et al (2012) Li-O2 and Li-S batteries with high energy storage. Nat Mater 11(1):19–29CrossRef
111.
go back to reference Ye H, Yin Y-X, Xin S et al (2013) Tuning the porous structure of carbon hosts for loading sulfur toward long lifespan cathode materials for Li-S batteries. J Mater Chem A 1(22):6602–6608CrossRef Ye H, Yin Y-X, Xin S et al (2013) Tuning the porous structure of carbon hosts for loading sulfur toward long lifespan cathode materials for Li-S batteries. J Mater Chem A 1(22):6602–6608CrossRef
112.
go back to reference Chung S-H, Manthiram A (2014) Carbonized eggshell membrane as a natural polysulfide reservoir for highly reversible Li-S batteries. Adv Mater 26(9):1360–1365CrossRef Chung S-H, Manthiram A (2014) Carbonized eggshell membrane as a natural polysulfide reservoir for highly reversible Li-S batteries. Adv Mater 26(9):1360–1365CrossRef
113.
go back to reference Zhang Z, Wang G, Lai Y et al (2015) Nitrogen-doped porous hollow carbon sphere-decorated separators for advanced lithium-sulfur batteries. J Power Sources 300:157–163CrossRef Zhang Z, Wang G, Lai Y et al (2015) Nitrogen-doped porous hollow carbon sphere-decorated separators for advanced lithium-sulfur batteries. J Power Sources 300:157–163CrossRef
114.
go back to reference Ji X, Lee KT, Nazar LF (2009) A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries. Nat Mater 8(6):500–506CrossRef Ji X, Lee KT, Nazar LF (2009) A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries. Nat Mater 8(6):500–506CrossRef
115.
go back to reference Zheng G, Zhang Q, Cha JJ et al (2013) Amphiphilic surface modification of hollow carbon nanofibers for improved cycle life of lithium sulfur batteries. Nano Lett 13(3):1265–1270CrossRef Zheng G, Zhang Q, Cha JJ et al (2013) Amphiphilic surface modification of hollow carbon nanofibers for improved cycle life of lithium sulfur batteries. Nano Lett 13(3):1265–1270CrossRef
116.
go back to reference Zheng G, Yang Y, Cha JJ et al (2011) Hollow carbon nanofiber-encapsulated sulfur cathodes for high specific capacity rechargeable lithium batteries. Nano Lett 11(10):4462–4467CrossRef Zheng G, Yang Y, Cha JJ et al (2011) Hollow carbon nanofiber-encapsulated sulfur cathodes for high specific capacity rechargeable lithium batteries. Nano Lett 11(10):4462–4467CrossRef
117.
go back to reference Slater MD, Kim D, Lee E et al (2013) Sodium-ion batteries. Adv Funct Mater 23(8):947–958CrossRef Slater MD, Kim D, Lee E et al (2013) Sodium-ion batteries. Adv Funct Mater 23(8):947–958CrossRef
118.
go back to reference Ong SP, Chevrier VL, Hautier G et al (2011) Voltage, stability and diffusion barrier differences between sodium-ion and lithium-ion intercalation materials. Energy Environ Sci 4(9):3680–3688CrossRef Ong SP, Chevrier VL, Hautier G et al (2011) Voltage, stability and diffusion barrier differences between sodium-ion and lithium-ion intercalation materials. Energy Environ Sci 4(9):3680–3688CrossRef
119.
go back to reference Zhou Z, Gao X, Yan J et al (2004) A first-principles study of lithium absorption in boron- or nitrogen-doped single-walled carbon nanotubes. Carbon 42(12–13):2677–2682CrossRef Zhou Z, Gao X, Yan J et al (2004) A first-principles study of lithium absorption in boron- or nitrogen-doped single-walled carbon nanotubes. Carbon 42(12–13):2677–2682CrossRef
120.
go back to reference Wang Z, Qie L, Yuan L et al (2013) Functionalized N-doped interconnected carbon nanofibers as an anode material for sodium-ion storage with excellent performance. Carbon 55:328–334CrossRef Wang Z, Qie L, Yuan L et al (2013) Functionalized N-doped interconnected carbon nanofibers as an anode material for sodium-ion storage with excellent performance. Carbon 55:328–334CrossRef
121.
go back to reference Becker HI (1957) Low voltage electrolytic capacitor. US Patent 2800616A Becker HI (1957) Low voltage electrolytic capacitor. US Patent 2800616A
122.
go back to reference Vangari Manisha, Pryor Tonya, Jiang L (2013) Supercapacitors: review of materials and fabrication methods. J Energy Eng 139(2):72–79CrossRef Vangari Manisha, Pryor Tonya, Jiang L (2013) Supercapacitors: review of materials and fabrication methods. J Energy Eng 139(2):72–79CrossRef
123.
go back to reference Lu Y, Fu K, Zhang S et al (2015) Centrifugal spinning: a novel approach to fabricate porous carbon fibers as binder-free electrodes for electric double-layer capacitors. J Power Sources 273:502–510CrossRef Lu Y, Fu K, Zhang S et al (2015) Centrifugal spinning: a novel approach to fabricate porous carbon fibers as binder-free electrodes for electric double-layer capacitors. J Power Sources 273:502–510CrossRef
124.
go back to reference Choi N-S, Chen Z, Freunberger SA et al (2012) Challenges facing lithium batteries and electrical double-layer capacitors. Angew Chem Int Ed 51(40):9994–10024CrossRef Choi N-S, Chen Z, Freunberger SA et al (2012) Challenges facing lithium batteries and electrical double-layer capacitors. Angew Chem Int Ed 51(40):9994–10024CrossRef
125.
go back to reference Huang C-W, Hsu C-H, Kuo P-L et al (2011) Mesoporous carbon spheres grafted with carbon nanofibers for high-rate electric double layer capacitors. Carbon 49(3):895–903CrossRef Huang C-W, Hsu C-H, Kuo P-L et al (2011) Mesoporous carbon spheres grafted with carbon nanofibers for high-rate electric double layer capacitors. Carbon 49(3):895–903CrossRef
126.
go back to reference Portet C, Yushin G, Gogotsi Y (2007) Electrochemical performance of carbon onions, nanodiamonds, carbon black and multiwalled nanotubes in electrical double layer capacitors. Carbon 45(13):2511–2518CrossRef Portet C, Yushin G, Gogotsi Y (2007) Electrochemical performance of carbon onions, nanodiamonds, carbon black and multiwalled nanotubes in electrical double layer capacitors. Carbon 45(13):2511–2518CrossRef
127.
go back to reference Largeot C, Portet C, Chmiola J et al (2008) Relation between the ion size and pore size for an electric double-layer capacitor. J Am Chem Soc 130(9):2730–2731CrossRef Largeot C, Portet C, Chmiola J et al (2008) Relation between the ion size and pore size for an electric double-layer capacitor. J Am Chem Soc 130(9):2730–2731CrossRef
128.
go back to reference Veerasamy VS, Yuan J, Amaratunga GAJ et al (1993) Nitrogen doping of highly tetrahedral amorphous carbon. Phys Rev B 48(24):17954–17959CrossRef Veerasamy VS, Yuan J, Amaratunga GAJ et al (1993) Nitrogen doping of highly tetrahedral amorphous carbon. Phys Rev B 48(24):17954–17959CrossRef
129.
go back to reference Wang C, Zhou Y, Sun L et al (2013) Sustainable synthesis of phosphorus- and nitrogen-co-doped porous carbons with tunable surface properties for supercapacitors. J Power Sources 239:81–88CrossRef Wang C, Zhou Y, Sun L et al (2013) Sustainable synthesis of phosphorus- and nitrogen-co-doped porous carbons with tunable surface properties for supercapacitors. J Power Sources 239:81–88CrossRef
130.
go back to reference Hulicova-Jurcakova D, Puziy AM, Poddubnaya OI et al (2009) Highly stable performance of supercapacitors from phosphorus-enriched carbons. J Am Chem Soc 131(14):5026–5027CrossRef Hulicova-Jurcakova D, Puziy AM, Poddubnaya OI et al (2009) Highly stable performance of supercapacitors from phosphorus-enriched carbons. J Am Chem Soc 131(14):5026–5027CrossRef
131.
go back to reference Conway BE, Birss V, Wojtowicz J (1997) The role and utilization of pseudocapacitance for energy storage by supercapacitors. J Power Sources 66(1–2):1–14CrossRef Conway BE, Birss V, Wojtowicz J (1997) The role and utilization of pseudocapacitance for energy storage by supercapacitors. J Power Sources 66(1–2):1–14CrossRef
132.
go back to reference Langmuir I (1918) The adsorption of gases on plane surfaces of glass, mica and platinum. J Am Chem Soc 40(9):1361–1403CrossRef Langmuir I (1918) The adsorption of gases on plane surfaces of glass, mica and platinum. J Am Chem Soc 40(9):1361–1403CrossRef
133.
go back to reference Wu Z-Y, Xu X-X, Hu B-C et al (2015) Iron carbide nanoparticles encapsulated in mesoporous Fe-N-doped carbon nanofibers for efficient electrocatalysis. Angew Chem Int Ed 54(28):8179–8183CrossRef Wu Z-Y, Xu X-X, Hu B-C et al (2015) Iron carbide nanoparticles encapsulated in mesoporous Fe-N-doped carbon nanofibers for efficient electrocatalysis. Angew Chem Int Ed 54(28):8179–8183CrossRef
134.
go back to reference Chen W, Rakhi RB, Hu L et al (2011) High-performance nanostructured supercapacitors on a sponge. Nano Lett 11(12):5165–5172CrossRef Chen W, Rakhi RB, Hu L et al (2011) High-performance nanostructured supercapacitors on a sponge. Nano Lett 11(12):5165–5172CrossRef
135.
go back to reference Wang J-G, Yang Y, Huang Z-H et al (2013) A high-performance asymmetric supercapacitor based on carbon and carbon-MnO2 nanofiber electrodes. Carbon 61:190–199CrossRef Wang J-G, Yang Y, Huang Z-H et al (2013) A high-performance asymmetric supercapacitor based on carbon and carbon-MnO2 nanofiber electrodes. Carbon 61:190–199CrossRef
136.
go back to reference Zhang Y, Feng H, Wu X et al (2009) Progress of electrochemical capacitor electrode materials: a review. Int J Hydrogen Energy 34(11):4889–4899CrossRef Zhang Y, Feng H, Wu X et al (2009) Progress of electrochemical capacitor electrode materials: a review. Int J Hydrogen Energy 34(11):4889–4899CrossRef
137.
go back to reference Wang H, Yoshio M, Thapa AK et al (2007) From symmetric AC/AC to asymmetric AC/graphite, a progress in electrochemical capacitors. J Power Sources 169(2):375–380CrossRef Wang H, Yoshio M, Thapa AK et al (2007) From symmetric AC/AC to asymmetric AC/graphite, a progress in electrochemical capacitors. J Power Sources 169(2):375–380CrossRef
138.
go back to reference Dubal DP, Ayyad O, Ruiz V et al (2015) Hybrid energy storage: the merging of battery and supercapacitor chemistries. Chem Soc Rev 44(7):1777–1790CrossRef Dubal DP, Ayyad O, Ruiz V et al (2015) Hybrid energy storage: the merging of battery and supercapacitor chemistries. Chem Soc Rev 44(7):1777–1790CrossRef
Metadata
Title
Polymer- and Carbon-Based Nanofibres for Energy Storage
Authors
Alexandra Ho
Suxi Wang
Xu Li
Haifei Zhang
Copyright Year
2017
DOI
https://doi.org/10.1007/978-3-319-57003-7_7

Premium Partners