Skip to main content
Top
Published in: Journal of Materials Science 15/2017

02-02-2017 | In Honor of Larry Hench

Polymer-coated bioactive glass S53P4 increases VEGF and TNF expression in an induced membrane model in vivo

Authors: R. Björkenheim, G. Strömberg, J. Pajarinen, M. Ainola, P. Uppstu, L. Hupa, T. O. Böhling, N. C. Lindfors

Published in: Journal of Materials Science | Issue 15/2017

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The two-stage induced-membrane technique for treatment of large bone defects has become popular among orthopedic surgeons. In the first operation, the bone defect is filled with poly(methyl methacrylate) (PMMA), which is intended to produce a membrane around the implant. In the second operation, PMMA is replaced with autograft or allograft bone. Bioactive glasses (BAGs) are bone substitutes with bone-stimulating and angiogenetic properties. The aim of our study was to evaluate the inductive vascular capacity of BAG-S53P4 and poly(lactide-co-glycolide) (PLGA)-coated BAG-S53P4 for potential use as bone substitutes in a single-stage induced-membrane technique. Sintered porous rods of BAG-S53P4, PLGA-coated BAG-S53P4 and PMMA were implanted in the femur of 36 rabbits for 2, 4 and 8 weeks. The expression of vascular endothelial growth factor (VEGF) and tumor necrosis factor alpha (TNF) in the induced membranes of implanted materials was analyzed with real-time quantitative polymerase chain reaction and compared with histology. Both uncoated BAG-S53P4 and PLGA-coated BAG-S53P4 increase expression of VEGF and TNF, resulting in higher amounts of capillary beds, compared with the lower expression of VEGF and less capillary beads observed for negative control and PMMA samples. A significantly higher expression of VEGF was observed for PLGA-coated BAG-S53P4 than for PMMA at 8 weeks (p < 0.036). VEGF and TNF expression in the induced membrane of BAG-S53P4 and PLGA-coated BAG-S53P4 is equal or superior to PMMA, the “gold standard” material used in the induced-membrane technique. Furthermore, the VEGF and TNF expression for PLGA-coated BAG-S53P4 increased during follow-up.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Atique FB, Khalil MM (2014) The bacterial contamination of allogenic bone emergence of multidrug-resistant bacteria in tissue bank. Biomed Res Int Article ID 430581:1–5 Atique FB, Khalil MM (2014) The bacterial contamination of allogenic bone emergence of multidrug-resistant bacteria in tissue bank. Biomed Res Int Article ID 430581:1–5
2.
go back to reference Zacchary I (2003) VEGF signaling: integration and multi-tasking in endothelial cell biology. Biochem Soc Trans 31:1171–1177CrossRef Zacchary I (2003) VEGF signaling: integration and multi-tasking in endothelial cell biology. Biochem Soc Trans 31:1171–1177CrossRef
3.
go back to reference Keramaris NC, Calori GM, Nikolaou VS, Schemitsch EH, Giannoudis PV (2008) Fracture vascularity and bone healing: a systematic review of the role of VEGF. Injury 39(S2):45–57CrossRef Keramaris NC, Calori GM, Nikolaou VS, Schemitsch EH, Giannoudis PV (2008) Fracture vascularity and bone healing: a systematic review of the role of VEGF. Injury 39(S2):45–57CrossRef
4.
go back to reference Masquelet AC, Fitoussi F, Begue T (2000) Reconstruction of the long bones by the induced membrane and spongy autograft. Orthop Clin North Am 41:27–37CrossRef Masquelet AC, Fitoussi F, Begue T (2000) Reconstruction of the long bones by the induced membrane and spongy autograft. Orthop Clin North Am 41:27–37CrossRef
5.
go back to reference Aho O-A, Lehenkari P, Ristiniemi J, Lehtonen S, Risteli J, Leskelä H-L (2013) The mechanism of action of induced membranes in bone repair. J Bone Joint Surg 95:597–604CrossRef Aho O-A, Lehenkari P, Ristiniemi J, Lehtonen S, Risteli J, Leskelä H-L (2013) The mechanism of action of induced membranes in bone repair. J Bone Joint Surg 95:597–604CrossRef
6.
go back to reference Pelissier PH, Masquelet AC, Bareile R, Pelissier SM, Amedee J (2004) Induced membranes secrete growth factors including vascular and osteoinductive factors and could stimulate bone regeneration. J Orthop Res 22:73–79CrossRef Pelissier PH, Masquelet AC, Bareile R, Pelissier SM, Amedee J (2004) Induced membranes secrete growth factors including vascular and osteoinductive factors and could stimulate bone regeneration. J Orthop Res 22:73–79CrossRef
7.
go back to reference Hench LL, Paschall HA (1973) Direct chemical bond of bioactive glass–ceramic materials to bone and muscle. J Biomed Mater Res Symp 4:25–42CrossRef Hench LL, Paschall HA (1973) Direct chemical bond of bioactive glass–ceramic materials to bone and muscle. J Biomed Mater Res Symp 4:25–42CrossRef
8.
9.
go back to reference Zhang D, Leppäranta O, Munukka E, Ylänen H, Viljanen MK, Eerola E, Hupa M, Hupa L (2010) Antibacterial effects and dissolution behavior of six bioactive glasses. J Biomed Mater Res 93A(2):475–483 Zhang D, Leppäranta O, Munukka E, Ylänen H, Viljanen MK, Eerola E, Hupa M, Hupa L (2010) Antibacterial effects and dissolution behavior of six bioactive glasses. J Biomed Mater Res 93A(2):475–483
10.
go back to reference Munukka E, Leppäranta O, Korkeamäki M, Vaahto M, Peltola T, Zhang D, Hupa L, Ylänen H, Salonen JI, Viljanen MK, Eerola E (2008) Bactericidal effects of bioactive glasses on clinically important aerobic bacteria. J Mater Sci Mater Med 19:27–32CrossRef Munukka E, Leppäranta O, Korkeamäki M, Vaahto M, Peltola T, Zhang D, Hupa L, Ylänen H, Salonen JI, Viljanen MK, Eerola E (2008) Bactericidal effects of bioactive glasses on clinically important aerobic bacteria. J Mater Sci Mater Med 19:27–32CrossRef
11.
go back to reference Gorustovich A, Roether J, Boccaccini A (2010) Effect of bioactive glasses on angiogenesis: a review of in vitro and in vivo evidences. Tissue Eng B Rev 16(2):199–207CrossRef Gorustovich A, Roether J, Boccaccini A (2010) Effect of bioactive glasses on angiogenesis: a review of in vitro and in vivo evidences. Tissue Eng B Rev 16(2):199–207CrossRef
12.
go back to reference Gerhardt L-C, Widdows KL, Erol MM, Burch CW, Sanz-Herrera J, Ochoa I, Stämpfli R et al (2011) The pro-angiogenic properties of multi-functional bioactive glass composite scaffolds. Biomaterials 32(17):4096–4108CrossRef Gerhardt L-C, Widdows KL, Erol MM, Burch CW, Sanz-Herrera J, Ochoa I, Stämpfli R et al (2011) The pro-angiogenic properties of multi-functional bioactive glass composite scaffolds. Biomaterials 32(17):4096–4108CrossRef
13.
go back to reference Detsch R, Storr P, Grűnewald A, Roether JA, Lindfors NC, Boccaccini AR (2014) Increase in VEGF secretion from human fibroblast cells by bioactive glass S53P4 to stimulate angiogenesis in bone. J Biomed Mater Res 102A:4055–4061CrossRef Detsch R, Storr P, Grűnewald A, Roether JA, Lindfors NC, Boccaccini AR (2014) Increase in VEGF secretion from human fibroblast cells by bioactive glass S53P4 to stimulate angiogenesis in bone. J Biomed Mater Res 102A:4055–4061CrossRef
14.
go back to reference Day D (2005) Bioactive glass stimulates the secretion of angiogenic growth factors and angiogenesis in vitro. Tissue Eng 11:768–778CrossRef Day D (2005) Bioactive glass stimulates the secretion of angiogenic growth factors and angiogenesis in vitro. Tissue Eng 11:768–778CrossRef
15.
go back to reference Keshaw H, Forbes A, Day RM (2005) Release of angiogenic growth factors from cells encapsulated in alginate beads with bioactive glass. Biomaterials 26(19):4171–4179CrossRef Keshaw H, Forbes A, Day RM (2005) Release of angiogenic growth factors from cells encapsulated in alginate beads with bioactive glass. Biomaterials 26(19):4171–4179CrossRef
16.
go back to reference Erol M, Özyuguran A, Özarpat Ö, Kucukbayrak S (2012) 3D composite scaffolds using strontium containing bioactive glasses. J Eur Ceram Soc 32:2747–2755CrossRef Erol M, Özyuguran A, Özarpat Ö, Kucukbayrak S (2012) 3D composite scaffolds using strontium containing bioactive glasses. J Eur Ceram Soc 32:2747–2755CrossRef
17.
go back to reference Fagerlund S, Ek P, Hupa L, Hupa M (2012) Dissolution kinetics of a bioactive glass by continuous measurement. J Am Ceram Soc:1–8 Fagerlund S, Ek P, Hupa L, Hupa M (2012) Dissolution kinetics of a bioactive glass by continuous measurement. J Am Ceram Soc:1–8
18.
go back to reference Zhai W, Lu H, Chen L, Lin X, Huang Y, Dai K, Naoki K, Chen G, Chang J (2012) Silicate bioceramics induce angiogenesis during bone regeneration. Acta Biomater 8:341–349CrossRef Zhai W, Lu H, Chen L, Lin X, Huang Y, Dai K, Naoki K, Chen G, Chang J (2012) Silicate bioceramics induce angiogenesis during bone regeneration. Acta Biomater 8:341–349CrossRef
19.
go back to reference Li H, Chang J (2013) Bioactive silicate materials stimulate angiogenesis in fibroblast and endothelial cell co-culture system through paracrine effect. Acta Biomater 9:6981–6991CrossRef Li H, Chang J (2013) Bioactive silicate materials stimulate angiogenesis in fibroblast and endothelial cell co-culture system through paracrine effect. Acta Biomater 9:6981–6991CrossRef
20.
go back to reference Duan J, Yu Y, Yu Y, Li Y, Huang P, Zhou Z, Peng S, Sun Z (2014) Silica nanoparticles enhance autophagic activity, disturb endothelial cell homeostasis and impair angiogenesis. Int J Nanomed 9:5131–5141CrossRef Duan J, Yu Y, Yu Y, Li Y, Huang P, Zhou Z, Peng S, Sun Z (2014) Silica nanoparticles enhance autophagic activity, disturb endothelial cell homeostasis and impair angiogenesis. Int J Nanomed 9:5131–5141CrossRef
21.
go back to reference Shi M, Zhou Y, Shao J, Chen Z, Song B, Chang J, Wu C, Xiao Y (2015) Stimulation of osteogenesis and angiogenesis of hBMSCs by delivering Si ions and functional drug from mesoporous silica nanospheres. Acta Biomater 21:178–189CrossRef Shi M, Zhou Y, Shao J, Chen Z, Song B, Chang J, Wu C, Xiao Y (2015) Stimulation of osteogenesis and angiogenesis of hBMSCs by delivering Si ions and functional drug from mesoporous silica nanospheres. Acta Biomater 21:178–189CrossRef
22.
24.
go back to reference Loi F, Córdova LA, Pajarinen J, Lin TH, Yao Z, Goodman SB (2016) Inflammation, fracture and bone repair. Bone 86:119–130CrossRef Loi F, Córdova LA, Pajarinen J, Lin TH, Yao Z, Goodman SB (2016) Inflammation, fracture and bone repair. Bone 86:119–130CrossRef
Metadata
Title
Polymer-coated bioactive glass S53P4 increases VEGF and TNF expression in an induced membrane model in vivo
Authors
R. Björkenheim
G. Strömberg
J. Pajarinen
M. Ainola
P. Uppstu
L. Hupa
T. O. Böhling
N. C. Lindfors
Publication date
02-02-2017
Publisher
Springer US
Published in
Journal of Materials Science / Issue 15/2017
Print ISSN: 0022-2461
Electronic ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-017-0839-6

Other articles of this Issue 15/2017

Journal of Materials Science 15/2017 Go to the issue

Premium Partners