Skip to main content
Top

2016 | OriginalPaper | Chapter

4. Polymer Gels as EAPs: Applications

Authors : Martin Elstner, Andreas Richter

Published in: Electromechanically Active Polymers

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Stimuli-responsive hydrogels display a variety of interesting features that make them ideal candidates for technological applications. The applicable stimuli range from temperature, pH, and (bio)chemical species to electric fields and light; some materials can even be controlled by multiple stimuli. Hydrogel materials can be synthesized by a single-step free-radical polymerization, and various methods to introduce them into a final system are discussed. This chapter covers applications of smart hydrogels in various (micro-)systems starting from transparent conductors over stimuli-sensitive optical components and drug delivery devices for medical applications. Intensively discussed are microfluidic applications starting from single components as thermostats, chemostats, and valves toward complex integrated systems. Finally, we outline the implications of autonomous microfluidic devices to the field of chemical information processing.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Allerdißen M, Greiner R, Richter A (2013) Microfluidic microchemomechanical systems. In: Vincenzini P, Lorenzelli L (eds) Advances in science and technology. Trans Tech, Pfaffikon, Switzerland, pp 84–89 Allerdißen M, Greiner R, Richter A (2013) Microfluidic microchemomechanical systems. In: Vincenzini P, Lorenzelli L (eds) Advances in science and technology. Trans Tech, Pfaffikon, Switzerland, pp 84–89
go back to reference Au AK, Lai H, Utela BR, Folch A (2011) Microvalves and micropumps for bioMEMS. Micromachines 2:179–220CrossRef Au AK, Lai H, Utela BR, Folch A (2011) Microvalves and micropumps for bioMEMS. Micromachines 2:179–220CrossRef
go back to reference Bae YM, Lee K-H, Yang J et al (2014) Hydrogel-based capillary flow pumping in a hydrophobic microfluidic channel. Jpn J Appl Phys 53:067201CrossRef Bae YM, Lee K-H, Yang J et al (2014) Hydrogel-based capillary flow pumping in a hydrophobic microfluidic channel. Jpn J Appl Phys 53:067201CrossRef
go back to reference Bar-Cohen Y (2002) Electroactive polymers as artificial muscles: a review. J Spacecr Rockets 39:822–827CrossRef Bar-Cohen Y (2002) Electroactive polymers as artificial muscles: a review. J Spacecr Rockets 39:822–827CrossRef
go back to reference Beebe DJ, Moore JS, Bauer JM et al (2000) Functional hydrogel structures for autonomous flow control inside microfluidic channels. Nature 404:588–590CrossRef Beebe DJ, Moore JS, Bauer JM et al (2000) Functional hydrogel structures for autonomous flow control inside microfluidic channels. Nature 404:588–590CrossRef
go back to reference Benard WL, Kahn H, Heuer AH, Huff MA (1998) Thin-film shape-memory alloy actuated micropumps. J Microelectromech Syst 7:245–251CrossRef Benard WL, Kahn H, Heuer AH, Huff MA (1998) Thin-film shape-memory alloy actuated micropumps. J Microelectromech Syst 7:245–251CrossRef
go back to reference Benito-Lopez F, Antoñana-Díez M, Curto VF et al (2014) Modular microfluidic valve structures based on reversible thermoresponsive ionogel actuators. Lab Chip 14:3530–3538CrossRef Benito-Lopez F, Antoñana-Díez M, Curto VF et al (2014) Modular microfluidic valve structures based on reversible thermoresponsive ionogel actuators. Lab Chip 14:3530–3538CrossRef
go back to reference Chin CD, Linder V, Sia SK (2012) Commercialization of microfluidic point-of-care diagnostic devices. Lab Chip 12:2118–2134CrossRef Chin CD, Linder V, Sia SK (2012) Commercialization of microfluidic point-of-care diagnostic devices. Lab Chip 12:2118–2134CrossRef
go back to reference Craw P, Balachandran W (2012) Isothermal nucleic acid amplification technologies for point-of-care diagnostics: a critical review. Lab Chip 12:2469–2486CrossRef Craw P, Balachandran W (2012) Isothermal nucleic acid amplification technologies for point-of-care diagnostics: a critical review. Lab Chip 12:2469–2486CrossRef
go back to reference Ding H, Zhong M, Kim YJ et al (2014) Biologically derived soft conducting hydrogels using heparin-doped polymer networks. ACS Nano 8:4348–4357CrossRef Ding H, Zhong M, Kim YJ et al (2014) Biologically derived soft conducting hydrogels using heparin-doped polymer networks. ACS Nano 8:4348–4357CrossRef
go back to reference Donatin E, Drancourt M (2012) DNA microarrays for the diagnosis of infectious diseases. Méd Mal Infect 42:453–459CrossRef Donatin E, Drancourt M (2012) DNA microarrays for the diagnosis of infectious diseases. Méd Mal Infect 42:453–459CrossRef
go back to reference Eddington DT, Beebe DJ (2004) Flow control with hydrogels. Adv Drug Deliv Rev 56:199–210CrossRef Eddington DT, Beebe DJ (2004) Flow control with hydrogels. Adv Drug Deliv Rev 56:199–210CrossRef
go back to reference Elstner M, Axthelm J, Schiller A (2014) Sugar-based molecular computing by material implication. Angew Chem Int Ed 53:7339–7343CrossRef Elstner M, Axthelm J, Schiller A (2014) Sugar-based molecular computing by material implication. Angew Chem Int Ed 53:7339–7343CrossRef
go back to reference Gerlach G, Arndt K-F (2009) Hydrogel sensors and actuators: engineering and technology. Springer-Verlag, Berlin Heidelberg Gerlach G, Arndt K-F (2009) Hydrogel sensors and actuators: engineering and technology. Springer-Verlag, Berlin Heidelberg
go back to reference Greiner R, Allerdissen M, Voigt A, Richter A (2012) Fluidic microchemomechanical integrated circuits processing chemical information. Lab Chip 12:5034–5044CrossRef Greiner R, Allerdissen M, Voigt A, Richter A (2012) Fluidic microchemomechanical integrated circuits processing chemical information. Lab Chip 12:5034–5044CrossRef
go back to reference Hart RA, da Silva AK (2012) Self-optimizing, thermally adaptive microfluidic flow structures. Microfluid Nanofluid 14:121–132CrossRef Hart RA, da Silva AK (2012) Self-optimizing, thermally adaptive microfluidic flow structures. Microfluid Nanofluid 14:121–132CrossRef
go back to reference Hoffman AS (2012) Hydrogels for biomedical applications. Adv Drug Deliv Rev 64(Suppl):18–23CrossRef Hoffman AS (2012) Hydrogels for biomedical applications. Adv Drug Deliv Rev 64(Suppl):18–23CrossRef
go back to reference Hoffmann J, Plötner M, Kuckling D, Fischer W-J (1999) Photopatterning of thermally sensitive hydrogels useful for microactuators. Sens Actuators Phys 77:139–144CrossRef Hoffmann J, Plötner M, Kuckling D, Fischer W-J (1999) Photopatterning of thermally sensitive hydrogels useful for microactuators. Sens Actuators Phys 77:139–144CrossRef
go back to reference Jager EWH, Smela E, Inganäs O (2000) Microfabricating conjugated polymer actuators. Science 290:1540–1545CrossRef Jager EWH, Smela E, Inganäs O (2000) Microfabricating conjugated polymer actuators. Science 290:1540–1545CrossRef
go back to reference Jung J, Arnold RD, Wicker L (2013) Pectin and charge modified pectin hydrogel beads as a colon-targeted drug delivery carrier. Colloids Surf B Biointerfaces 104:116–121CrossRef Jung J, Arnold RD, Wicker L (2013) Pectin and charge modified pectin hydrogel beads as a colon-targeted drug delivery carrier. Colloids Surf B Biointerfaces 104:116–121CrossRef
go back to reference Keplinger C, Sun J-Y, Foo CC et al (2013) Stretchable, transparent, ionic conductors. Science 341:984–987CrossRef Keplinger C, Sun J-Y, Foo CC et al (2013) Stretchable, transparent, ionic conductors. Science 341:984–987CrossRef
go back to reference Kikuchi A, Okano T (2002) Pulsatile drug release control using hydrogels. Adv Drug Deliv Rev 54:53–77CrossRef Kikuchi A, Okano T (2002) Pulsatile drug release control using hydrogels. Adv Drug Deliv Rev 54:53–77CrossRef
go back to reference Kim J, Serpe MJ, Lyon LA (2004) Hydrogel microparticles as dynamically tunable microlenses. J Am Chem Soc 126:9512–9513CrossRef Kim J, Serpe MJ, Lyon LA (2004) Hydrogel microparticles as dynamically tunable microlenses. J Am Chem Soc 126:9512–9513CrossRef
go back to reference Kim J, Singh N, Lyon LA (2007) Displacement-induced switching rates of bioresponsive hydrogel microlenses. Chem Mater 19:2527–2532CrossRef Kim J, Singh N, Lyon LA (2007) Displacement-induced switching rates of bioresponsive hydrogel microlenses. Chem Mater 19:2527–2532CrossRef
go back to reference Kuckling D, Adler H-JP, Arndt K-F et al (1999) Photocrosslinking of thin films of temperature-sensitive polymers. Polym Adv Technol 10:345–352CrossRef Kuckling D, Adler H-JP, Arndt K-F et al (1999) Photocrosslinking of thin films of temperature-sensitive polymers. Polym Adv Technol 10:345–352CrossRef
go back to reference Lee SC, Kwon IK, Park K (2013) Hydrogels for delivery of bioactive agents: a historical perspective. Adv Drug Deliv Rev 65:17–20CrossRef Lee SC, Kwon IK, Park K (2013) Hydrogels for delivery of bioactive agents: a historical perspective. Adv Drug Deliv Rev 65:17–20CrossRef
go back to reference Lendlein A, Kelch S (2002) Shape-memory polymers. Angew Chem Int Ed 41:2034–2057CrossRef Lendlein A, Kelch S (2002) Shape-memory polymers. Angew Chem Int Ed 41:2034–2057CrossRef
go back to reference Lendlein A, Jiang H, Jünger O, Langer R (2005) Light-induced shape-memory polymers. Nature 434:879–882CrossRef Lendlein A, Jiang H, Jünger O, Langer R (2005) Light-induced shape-memory polymers. Nature 434:879–882CrossRef
go back to reference Li W, Zhao H, Teasdale PR et al (2002) Synthesis and characterisation of a polyacrylamide–polyacrylic acid copolymer hydrogel for environmental analysis of Cu and Cd. React Funct Polym 52:31–41CrossRef Li W, Zhao H, Teasdale PR et al (2002) Synthesis and characterisation of a polyacrylamide–polyacrylic acid copolymer hydrogel for environmental analysis of Cu and Cd. React Funct Polym 52:31–41CrossRef
go back to reference Lin S, Wang W, Ju X-J et al (2014) A simple strategy for in situ fabrication of a smart hydrogel microvalve within microchannels for thermostatic control. Lab Chip 14:2626–2634CrossRef Lin S, Wang W, Ju X-J et al (2014) A simple strategy for in situ fabrication of a smart hydrogel microvalve within microchannels for thermostatic control. Lab Chip 14:2626–2634CrossRef
go back to reference Linder V (2007) Microfluidics at the crossroad with point-of-care diagnostics. Analyst 132:1186–1192CrossRef Linder V (2007) Microfluidics at the crossroad with point-of-care diagnostics. Analyst 132:1186–1192CrossRef
go back to reference Mathur AM, Moorjani SK, Scranton AB (1996) Methods for synthesis of hydrogel networks: a review. J Macromol Sci Part C 36:405–430CrossRef Mathur AM, Moorjani SK, Scranton AB (1996) Methods for synthesis of hydrogel networks: a review. J Macromol Sci Part C 36:405–430CrossRef
go back to reference Mura S, Nicolas J, Couvreur P (2013) Stimuli-responsive nanocarriers for drug delivery. Nat Mater 12:991–1003CrossRef Mura S, Nicolas J, Couvreur P (2013) Stimuli-responsive nanocarriers for drug delivery. Nat Mater 12:991–1003CrossRef
go back to reference Nawroth JC, Lee H, Feinberg AW et al (2012) A tissue-engineered jellyfish with biomimetic propulsion. Nat Biotechnol 30:792–797CrossRef Nawroth JC, Lee H, Feinberg AW et al (2012) A tissue-engineered jellyfish with biomimetic propulsion. Nat Biotechnol 30:792–797CrossRef
go back to reference Niemz A, Ferguson TM, Boyle DS (2011) Point-of-care nucleic acid testing for infectious diseases. Trends Biotechnol 29:240–250CrossRef Niemz A, Ferguson TM, Boyle DS (2011) Point-of-care nucleic acid testing for infectious diseases. Trends Biotechnol 29:240–250CrossRef
go back to reference Nuxoll E (2013) BioMEMS in drug delivery. Adv Drug Deliv Rev 65:1611–1625CrossRef Nuxoll E (2013) BioMEMS in drug delivery. Adv Drug Deliv Rev 65:1611–1625CrossRef
go back to reference Park S, Zhang Y, Lin S et al (2011) Advances in microfluidic PCR for point-of-care infectious disease diagnostics. Biotechnol Adv 29:830–839CrossRef Park S, Zhang Y, Lin S et al (2011) Advances in microfluidic PCR for point-of-care infectious disease diagnostics. Biotechnol Adv 29:830–839CrossRef
go back to reference Paschew G, Körbitz R, Richter A (2013) Multimodal, high-resolution imaging system based on stimuli-responsive polymers. Advances in Science and Technology, In, pp 44–49 Paschew G, Körbitz R, Richter A (2013) Multimodal, high-resolution imaging system based on stimuli-responsive polymers. Advances in Science and Technology, In, pp 44–49
go back to reference Plueddemann EP (2013) Silane coupling agents. Springer Science & Business Media, New York Plueddemann EP (2013) Silane coupling agents. Springer Science & Business Media, New York
go back to reference Qiu Y, Park K (2012) Environment-sensitive hydrogels for drug delivery. Adv Drug Deliv Rev 64(Suppl):49–60CrossRef Qiu Y, Park K (2012) Environment-sensitive hydrogels for drug delivery. Adv Drug Deliv Rev 64(Suppl):49–60CrossRef
go back to reference Richter A (2009) Hydrogels for Actuators. In: Gerlach G, Arndt K-F (eds) Hydrogel sensors and actuators. Springer, Berlin/Heidelberg, pp 221–248CrossRef Richter A (2009) Hydrogels for Actuators. In: Gerlach G, Arndt K-F (eds) Hydrogel sensors and actuators. Springer, Berlin/Heidelberg, pp 221–248CrossRef
go back to reference Richter A, Paschew G (2009) Optoelectrothermic control of highly integrated polymer-based MEMS applied in an artificial skin. Adv Mater 21:979–983CrossRef Richter A, Paschew G (2009) Optoelectrothermic control of highly integrated polymer-based MEMS applied in an artificial skin. Adv Mater 21:979–983CrossRef
go back to reference Richter A, Kuckling D, Howitz S et al (2003) Electronically controllable microvalves based on smart hydrogels: magnitudes and potential applications. J Microelectromech Syst 12:748–753CrossRef Richter A, Kuckling D, Howitz S et al (2003) Electronically controllable microvalves based on smart hydrogels: magnitudes and potential applications. J Microelectromech Syst 12:748–753CrossRef
go back to reference Richter A, Türke A, Pich A (2007) Controlled double-sensitivity of microgels applied to electronically adjustable chemostats. Adv Mater 19:1109–1112CrossRef Richter A, Türke A, Pich A (2007) Controlled double-sensitivity of microgels applied to electronically adjustable chemostats. Adv Mater 19:1109–1112CrossRef
go back to reference Richter A, Klatt S, Paschew G, Klenke C (2009) Micropumps operated by swelling and shrinking of temperature-sensitive hydrogels. Lab Chip 9:613–618CrossRef Richter A, Klatt S, Paschew G, Klenke C (2009) Micropumps operated by swelling and shrinking of temperature-sensitive hydrogels. Lab Chip 9:613–618CrossRef
go back to reference Roy D, Brooks WLA, Sumerlin BS (2013) New directions in thermoresponsive polymers. Chem Soc Rev 42:7214–7243CrossRef Roy D, Brooks WLA, Sumerlin BS (2013) New directions in thermoresponsive polymers. Chem Soc Rev 42:7214–7243CrossRef
go back to reference Sekine S, Ido Y, Miyake T et al (2010) Conducting polymer electrodes printed on hydrogel. J Am Chem Soc 132:13174–13175CrossRef Sekine S, Ido Y, Miyake T et al (2010) Conducting polymer electrodes printed on hydrogel. J Am Chem Soc 132:13174–13175CrossRef
go back to reference Sia SK, Kricka LJ (2008) Microfluidics and point-of-care testing. Lab Chip 8:1982–1983CrossRef Sia SK, Kricka LJ (2008) Microfluidics and point-of-care testing. Lab Chip 8:1982–1983CrossRef
go back to reference Smela E (2003) Conjugated polymer actuators for biomedical applications. Adv Mater 15:481–494CrossRef Smela E (2003) Conjugated polymer actuators for biomedical applications. Adv Mater 15:481–494CrossRef
go back to reference Smela E, Inganäs O, Lundström I (1995) Controlled folding of micrometer-size structures. Science 268:1735–1738CrossRef Smela E, Inganäs O, Lundström I (1995) Controlled folding of micrometer-size structures. Science 268:1735–1738CrossRef
go back to reference Suzuki A, Tanaka T (1990) Phase transition in polymer gels induced by visible light. Nature 346:345–347CrossRef Suzuki A, Tanaka T (1990) Phase transition in polymer gels induced by visible light. Nature 346:345–347CrossRef
go back to reference Tanaka T, Nishio I, Sun S-T, Ueno-Nishio S (1982) Collapse of gels in an electric field. Science 218:467–469CrossRef Tanaka T, Nishio I, Sun S-T, Ueno-Nishio S (1982) Collapse of gels in an electric field. Science 218:467–469CrossRef
go back to reference Thompson AM, Paguirigan AL, Kreutz JE et al (2014) Microfluidics for single-cell genetic analysis. Lab Chip 14:3135–3142CrossRef Thompson AM, Paguirigan AL, Kreutz JE et al (2014) Microfluidics for single-cell genetic analysis. Lab Chip 14:3135–3142CrossRef
go back to reference Tondu B, Emirkhanian R, Mathé S, Ricard A (2009) A pH-activated artificial muscle using the McKibben-type braided structure. Sens Actuators Phys 150:124–130CrossRef Tondu B, Emirkhanian R, Mathé S, Ricard A (2009) A pH-activated artificial muscle using the McKibben-type braided structure. Sens Actuators Phys 150:124–130CrossRef
go back to reference Tondu B, Mathé S, Emirkhanian R (2010) Low pH-range control of McKibben polymeric artificial muscles. Sens Actuators Phys 159:73–78CrossRef Tondu B, Mathé S, Emirkhanian R (2010) Low pH-range control of McKibben polymeric artificial muscles. Sens Actuators Phys 159:73–78CrossRef
go back to reference Unger MA, Chou H-P, Thorsen T et al (2000) Monolithic microfabricated valves and pumps by multilayer soft lithography. Science 288:113–116CrossRef Unger MA, Chou H-P, Thorsen T et al (2000) Monolithic microfabricated valves and pumps by multilayer soft lithography. Science 288:113–116CrossRef
go back to reference Voigt A, Greiner R, Allerdißen M et al (2014) Towards computation with microchemomechanical systems. Int J Found Comput Sci 25:507–523CrossRef Voigt A, Greiner R, Allerdißen M et al (2014) Towards computation with microchemomechanical systems. Int J Found Comput Sci 25:507–523CrossRef
go back to reference Whitesides GM (2006) The origins and the future of microfluidics. Nature 442:368–373CrossRef Whitesides GM (2006) The origins and the future of microfluidics. Nature 442:368–373CrossRef
go back to reference Xu Y, Lin Z, Huang X et al (2013) Flexible solid-state supercapacitors based on three-dimensional graphene hydrogel films. ACS Nano 7:4042–4049CrossRef Xu Y, Lin Z, Huang X et al (2013) Flexible solid-state supercapacitors based on three-dimensional graphene hydrogel films. ACS Nano 7:4042–4049CrossRef
go back to reference Yang E-H, Lee C, Mueller J, George T (2004) Leak-tight piezoelectric microvalve for high-pressure gas micropropulsion. J Microelectromech Syst 13:799–807CrossRef Yang E-H, Lee C, Mueller J, George T (2004) Leak-tight piezoelectric microvalve for high-pressure gas micropropulsion. J Microelectromech Syst 13:799–807CrossRef
go back to reference Zhang D, Guo J (2011) The development and standardization of testing methods for genetically modified organisms and their derived productsF. J Integr Plant Biol 53:539–551CrossRef Zhang D, Guo J (2011) The development and standardization of testing methods for genetically modified organisms and their derived productsF. J Integr Plant Biol 53:539–551CrossRef
go back to reference Zhang Z, Philen M (2011) Review: pressurized artificial muscles. J Intell Mater Syst Struct 53:539–551, 1045389X11420592 Zhang Z, Philen M (2011) Review: pressurized artificial muscles. J Intell Mater Syst Struct 53:539–551, 1045389X11420592
go back to reference Zhang Y, Liu Z, Swaddiwudhipong S et al (2012) pH-sensitive hydrogel for micro-fluidic valve. J Funct Biomater 3:464–479CrossRef Zhang Y, Liu Z, Swaddiwudhipong S et al (2012) pH-sensitive hydrogel for micro-fluidic valve. J Funct Biomater 3:464–479CrossRef
go back to reference Ziaie B, Baldi A, Lei M et al (2004) Hard and soft micromachining for BioMEMS: review of techniques and examples of applications in microfluidics and drug delivery. Adv Drug Deliv Rev 56:145–172CrossRef Ziaie B, Baldi A, Lei M et al (2004) Hard and soft micromachining for BioMEMS: review of techniques and examples of applications in microfluidics and drug delivery. Adv Drug Deliv Rev 56:145–172CrossRef
Metadata
Title
Polymer Gels as EAPs: Applications
Authors
Martin Elstner
Andreas Richter
Copyright Year
2016
DOI
https://doi.org/10.1007/978-3-319-31530-0_4