Skip to main content
Top

2016 | OriginalPaper | Chapter

3. Polymer Gels as EAPs: Models

Authors : Thomas Wallmersperger, Peter Leichsenring

Published in: Electromechanically Active Polymers

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Polyelectrolyte gels, often referred as ionic polymer gels are quite attractive intelligent materials. They consist of a solid phase, i.e., a polymer network with fixed charges, and a liquid phase with mobile ions. Typically these gels are immersed in a solution bath. An application of different kinds of stimuli – e.g., chemical (change of salt concentration or pH), thermal, magnetical, or electrical – leads to a new equilibrium between the different forces, such as osmotic pressure forces, electrostatic forces, and (visco-)elastic forces. This occurs in cooperation with absorption or delivery of the solvent resulting in a (local) change of volume.
In the present chapter, an overview over different modeling alternatives for chemically and electrically stimulated polyelectrolyte gels, placed in a solution bath, are given.
First, the statistical theory – a theory in which only the global swelling is of interest – is reviewed. By refining the scale, two different mesoscopic models are presented: first, the chemo-electro-mechanical transport model and second, a continuum model based on porous media. These models are capable of describing the changes of the local variables: concentrations, electric field, and displacement. So, e.g., by the application of an electric field, a bending movement of the polymer gel can be realized which is in excellent correlation with experimental investigations.
Concluding, the statistical theory is an efficient method to easily model the chemical stimulation of polyelectrolyte gels and the two continuum-based formulations are capable of simulating both chemically and electrically induced swelling or bending. So, they are an excellent technique to model hydrogel bending actuators or grippers.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Acartürk, AY (2009) Simulation of charged hydrated porous materials, PhD thesis, Universität Stuttgart Acartürk, AY (2009) Simulation of charged hydrated porous materials, PhD thesis, Universität Stuttgart
go back to reference Ballhause D, Wallmersperger T (2008) Coupled chemo-electro-mechanical finite element simulation of hydrogels: I. Chemical stimulation. Smart Mater Struct 17(4):045011CrossRef Ballhause D, Wallmersperger T (2008) Coupled chemo-electro-mechanical finite element simulation of hydrogels: I. Chemical stimulation. Smart Mater Struct 17(4):045011CrossRef
go back to reference Bennethum LS, Cushman JH (2002a) Multicomponent, multiphase thermodynamics of swelling porous media with electroquasistatics: I. Macroscale field equations. Transport Porous Media 47:309–336CrossRef Bennethum LS, Cushman JH (2002a) Multicomponent, multiphase thermodynamics of swelling porous media with electroquasistatics: I. Macroscale field equations. Transport Porous Media 47:309–336CrossRef
go back to reference Bennethum LS, Cushman JH (2002b) Multicomponent, multiphase thermodynamics of swelling porous media with electroquasistatics: II. Constitutive theory. Transport Porous Media 47:337–362CrossRef Bennethum LS, Cushman JH (2002b) Multicomponent, multiphase thermodynamics of swelling porous media with electroquasistatics: II. Constitutive theory. Transport Porous Media 47:337–362CrossRef
go back to reference Bowen RM (1976) Theory of mixtures, Part I. In: Eringen AC (ed) Continuum physics III. Academic, New York Bowen RM (1976) Theory of mixtures, Part I. In: Eringen AC (ed) Continuum physics III. Academic, New York
go back to reference Bowen RM (1980) Incompressible porous media models by use of the theory of mixtures. Int J Eng Sci 18:1129–1148CrossRef Bowen RM (1980) Incompressible porous media models by use of the theory of mixtures. Int J Eng Sci 18:1129–1148CrossRef
go back to reference Brock D, Lee W, Segalman D, Witkowski W (1994) A dynamic model of a linear actuator based on polymer hydrogel. J Int Mater Syst Struct 5:764–771CrossRef Brock D, Lee W, Segalman D, Witkowski W (1994) A dynamic model of a linear actuator based on polymer hydrogel. J Int Mater Syst Struct 5:764–771CrossRef
go back to reference de Gennes PJ, Okumura K, Shahinpoor M, Kim KJ (2000) Mechanoelectric effects in ionic gels. Europhys Lett 50(4):513–518CrossRef de Gennes PJ, Okumura K, Shahinpoor M, Kim KJ (2000) Mechanoelectric effects in ionic gels. Europhys Lett 50(4):513–518CrossRef
go back to reference De SK, Aluru NR (2004) A chemo-electro-mechanical mathematical model for simulation of pH sensitive hydrogels. Mech Mater 36(5–6):395–410CrossRef De SK, Aluru NR (2004) A chemo-electro-mechanical mathematical model for simulation of pH sensitive hydrogels. Mech Mater 36(5–6):395–410CrossRef
go back to reference Doi M, Matsumoto M, Hirose Y (1992) Deformation of ionic polymer gels by electric fields. Macromelecules 25:5504–5511CrossRef Doi M, Matsumoto M, Hirose Y (1992) Deformation of ionic polymer gels by electric fields. Macromelecules 25:5504–5511CrossRef
go back to reference Dolbow J, Fried E, Ji H (2005) A numerical strategy for investigating the kinetic response of stimulus-responsive hydrogels. Comput Meth Appl Mech Eng 194:4447–4480CrossRef Dolbow J, Fried E, Ji H (2005) A numerical strategy for investigating the kinetic response of stimulus-responsive hydrogels. Comput Meth Appl Mech Eng 194:4447–4480CrossRef
go back to reference Dolbow J et al (2006) Kinetics of thermally induced swelling of hydrogels. Int J Solid Struct 43(2006):1878–1907 Dolbow J et al (2006) Kinetics of thermally induced swelling of hydrogels. Int J Solid Struct 43(2006):1878–1907
go back to reference Ehlers W (2002) Foundations of multiphasic and porous materials. In: Ehlers W, Blum J (eds) Porous media: theory, experiments and numerical applications. Springer, Heidelberg/BerlinCrossRef Ehlers W (2002) Foundations of multiphasic and porous materials. In: Ehlers W, Blum J (eds) Porous media: theory, experiments and numerical applications. Springer, Heidelberg/BerlinCrossRef
go back to reference English AE, Mafé S, Manzanares JA, Yu X, Grosberg AY, Tanaka T (1996) Equilibrium swelling properties of polyampholytic hydrogels. J Chem Phys 104(21):8713–8720CrossRef English AE, Mafé S, Manzanares JA, Yu X, Grosberg AY, Tanaka T (1996) Equilibrium swelling properties of polyampholytic hydrogels. J Chem Phys 104(21):8713–8720CrossRef
go back to reference Eringen AC, Maugin GA (1990) Electrodynamics of continua I. Springer, New YorkCrossRef Eringen AC, Maugin GA (1990) Electrodynamics of continua I. Springer, New YorkCrossRef
go back to reference Ermatchkov V, Ninni L, Maurer G (2010) Thermodynamics of phase equilibrium for systems containing n-isopropyl acrylamide hydrogels. Fluid Phase Equilibria 296:140–148CrossRef Ermatchkov V, Ninni L, Maurer G (2010) Thermodynamics of phase equilibrium for systems containing n-isopropyl acrylamide hydrogels. Fluid Phase Equilibria 296:140–148CrossRef
go back to reference Flory PJ (1953) Principles of polymer chemistry. Cornell University Press, Ithaca Flory PJ (1953) Principles of polymer chemistry. Cornell University Press, Ithaca
go back to reference Flory PJ, Rehner J Jr (1943a) Statistical mechanics of cross‐linked polymer networks I. Rubberlike elasticity. J Chem Phys 11:512–520CrossRef Flory PJ, Rehner J Jr (1943a) Statistical mechanics of cross‐linked polymer networks I. Rubberlike elasticity. J Chem Phys 11:512–520CrossRef
go back to reference Flory PJ, Rehner J Jr (1943b) Statistical mechanics of cross‐linked polymer networks II. Swelling. J Chem Phys 11:521–526CrossRef Flory PJ, Rehner J Jr (1943b) Statistical mechanics of cross‐linked polymer networks II. Swelling. J Chem Phys 11:521–526CrossRef
go back to reference Frijns AJH, Huyghe JM, Janssen JD (1997) A validation of the quadriphasic mixture theory for intervertebral disc tissue. Int J Eng Sci 35(15):1419–1429CrossRef Frijns AJH, Huyghe JM, Janssen JD (1997) A validation of the quadriphasic mixture theory for intervertebral disc tissue. Int J Eng Sci 35(15):1419–1429CrossRef
go back to reference Grimshaw PE, Nussbaum JH, Grodzinsky AJ, Yarmush ML (1990) Kinetics of electrically and chemically induced swelling in polyelectrolyte gels. J Chem Phys 93(6):4462–4472CrossRef Grimshaw PE, Nussbaum JH, Grodzinsky AJ, Yarmush ML (1990) Kinetics of electrically and chemically induced swelling in polyelectrolyte gels. J Chem Phys 93(6):4462–4472CrossRef
go back to reference Gu WY, Lai WM, Mow VC (1999) Transport of multi-electrolytes in charged hydrated biological soft tissues. Transp Porous Media 34:143–157CrossRef Gu WY, Lai WM, Mow VC (1999) Transport of multi-electrolytes in charged hydrated biological soft tissues. Transp Porous Media 34:143–157CrossRef
go back to reference Guenther G, Gerlach G, Wallmersperger T (2009) Non-linear effects in hydrogel-based chemical sensors: experiment and modeling. J Int Mater Syst Struct 20(8):949–961CrossRef Guenther G, Gerlach G, Wallmersperger T (2009) Non-linear effects in hydrogel-based chemical sensors: experiment and modeling. J Int Mater Syst Struct 20(8):949–961CrossRef
go back to reference Gülch RW, Holdenried J, Weible A, Wallmersperger T, Kröplin B (2000) Polyelectrolyte gels in electric fields: a theoretical and experimental approach. In: Bar-Cohen Y (ed) Proceeding of the 7th international symposium on smart structures and materials: electroactive polymer actuators and devices, vol 3987–3927. SPIE, Bellingham, Washington, pp 193–202 Gülch RW, Holdenried J, Weible A, Wallmersperger T, Kröplin B (2000) Polyelectrolyte gels in electric fields: a theoretical and experimental approach. In: Bar-Cohen Y (ed) Proceeding of the 7th international symposium on smart structures and materials: electroactive polymer actuators and devices, vol 3987–3927. SPIE, Bellingham, Washington, pp 193–202
go back to reference Gurtin ME, Voorhees PW (1993) The continuum mechanics of coherent two-phase elastic solids with mass transport. Proc R Soc A 440(1909):323–343CrossRef Gurtin ME, Voorhees PW (1993) The continuum mechanics of coherent two-phase elastic solids with mass transport. Proc R Soc A 440(1909):323–343CrossRef
go back to reference Hamann CH, Vielstich W (1998) Elektrochemie, 3rd edn. Wiley-VCH, Weinheim Hamann CH, Vielstich W (1998) Elektrochemie, 3rd edn. Wiley-VCH, Weinheim
go back to reference Hamlen RP, Kent CE, Shafer SN (1965) Electrolytically activated contractile polymer. Nature 206:1149–1150CrossRef Hamlen RP, Kent CE, Shafer SN (1965) Electrolytically activated contractile polymer. Nature 206:1149–1150CrossRef
go back to reference Hirai M, Hirai T, Sukumoda A, Nemoto H, Amemiya Y, Kobayashi K, Ueki T (1995) Electrically induced reversible structural change of a highly swollen polymer gel network. J Chem Soc Faraday Trans 91(3):473–477CrossRef Hirai M, Hirai T, Sukumoda A, Nemoto H, Amemiya Y, Kobayashi K, Ueki T (1995) Electrically induced reversible structural change of a highly swollen polymer gel network. J Chem Soc Faraday Trans 91(3):473–477CrossRef
go back to reference Hong W, Liu Z, Suo Z (2009) Inhomogeneous swelling of a gel in equilibrium with a solvent and mechanical load. Int J Solid Struct 46(17):3282–3289CrossRef Hong W, Liu Z, Suo Z (2009) Inhomogeneous swelling of a gel in equilibrium with a solvent and mechanical load. Int J Solid Struct 46(17):3282–3289CrossRef
go back to reference Keller K, Wallmersperger T, Kröplin B, Günther M, Gerlach G (2011) Modelling of temperature-sensitive polyelectrolyte gels by the use of the coupled chemo-electromechanical formulation. Mech Mater 18(7):511–523 Keller K, Wallmersperger T, Kröplin B, Günther M, Gerlach G (2011) Modelling of temperature-sensitive polyelectrolyte gels by the use of the coupled chemo-electromechanical formulation. Mech Mater 18(7):511–523
go back to reference Lai WM, Mow VC, Sun DD, Ateshian GA (2000) On the electric potentials inside a charged soft hydrated biological tissue: streaming potential versus diffusion potential. J Biomech Eng 122(4):336–346CrossRef Lai WM, Mow VC, Sun DD, Ateshian GA (2000) On the electric potentials inside a charged soft hydrated biological tissue: streaming potential versus diffusion potential. J Biomech Eng 122(4):336–346CrossRef
go back to reference Lee W (1996) Polymer gel based actuator: dynamic model of gel for real time control. PhD thesis, MIT, Boston Lee W (1996) Polymer gel based actuator: dynamic model of gel for real time control. PhD thesis, MIT, Boston
go back to reference Li H, Lai F (2011) Transient analysis of the effect of the initial fixed charge density on the kinetic characteristics of the ionic-strength-sensitive hydrogel by a multi-effect-coupling model. Anal Bioanal Chem 399(3):1233–1243CrossRef Li H, Lai F (2011) Transient analysis of the effect of the initial fixed charge density on the kinetic characteristics of the ionic-strength-sensitive hydrogel by a multi-effect-coupling model. Anal Bioanal Chem 399(3):1233–1243CrossRef
go back to reference Li H, Luo R, Lam KY (2007) Modeling of ionic transport in electric-stimulus-responsive hydrogels. J Membr Sci 289(1–2):284–296CrossRef Li H, Luo R, Lam KY (2007) Modeling of ionic transport in electric-stimulus-responsive hydrogels. J Membr Sci 289(1–2):284–296CrossRef
go back to reference Lucantonio A, Nardinocchi P, Teresi L (2013) Transient analysis of swelling-induced large deformations in polymer gels. J Mech Phys Solid 61:205–218CrossRef Lucantonio A, Nardinocchi P, Teresi L (2013) Transient analysis of swelling-induced large deformations in polymer gels. J Mech Phys Solid 61:205–218CrossRef
go back to reference Mow VC, Kuei SC, Lai WM, Armstrong CG (1980) Biphasic creep and relaxation of articular cartilage in compression: theory and experiments. ASME J Biomed Eng 102:73–84CrossRef Mow VC, Kuei SC, Lai WM, Armstrong CG (1980) Biphasic creep and relaxation of articular cartilage in compression: theory and experiments. ASME J Biomed Eng 102:73–84CrossRef
go back to reference Ohmine I, Tanaka T (1982) Salt effects on the phase transition of ionic gels. J Chem Phys 77(11):5725–5729CrossRef Ohmine I, Tanaka T (1982) Salt effects on the phase transition of ionic gels. J Chem Phys 77(11):5725–5729CrossRef
go back to reference Orlov Y, Xu X, Maurer G (2006) Equilibrium swelling of n-isopropylacrylamide based ionic hydrogels in aqueous solutions of organic solvents: comparison of experiment with theory. Fluid Phase Equilib 249(1–2):6–16CrossRef Orlov Y, Xu X, Maurer G (2006) Equilibrium swelling of n-isopropylacrylamide based ionic hydrogels in aqueous solutions of organic solvents: comparison of experiment with theory. Fluid Phase Equilib 249(1–2):6–16CrossRef
go back to reference Orlov Y, Xu X, Maurer G (2007) An experimental and theoretical investigation on the swelling of n-isopropyl acrylamide based ionic hydrogels in aqueous solutions of (sodiumchloride or di-sodium hydrogen phosphate). Fluid Phase Equilib 254(1–2):1–10CrossRef Orlov Y, Xu X, Maurer G (2007) An experimental and theoretical investigation on the swelling of n-isopropyl acrylamide based ionic hydrogels in aqueous solutions of (sodiumchloride or di-sodium hydrogen phosphate). Fluid Phase Equilib 254(1–2):1–10CrossRef
go back to reference Quesada-Perez M, Maroto-Centeno J, Forcada J, Hidalgo-Alvarez R (2011) Gel swelling theories: the classical formalism and recent approaches. Soft Matter 7:10536CrossRef Quesada-Perez M, Maroto-Centeno J, Forcada J, Hidalgo-Alvarez R (2011) Gel swelling theories: the classical formalism and recent approaches. Soft Matter 7:10536CrossRef
go back to reference Rička J, Tanaka T (1984) Swelling of ionic gels: quantitative perfomance of the donnan theory. Macromolecules 17(12):2916–2921CrossRef Rička J, Tanaka T (1984) Swelling of ionic gels: quantitative perfomance of the donnan theory. Macromolecules 17(12):2916–2921CrossRef
go back to reference Sadowski G (2011) Special themed issue on ‘responsive gels’. Colloid Polym Sci 289:453CrossRef Sadowski G (2011) Special themed issue on ‘responsive gels’. Colloid Polym Sci 289:453CrossRef
go back to reference Schröder UP (1994) Experimentelle und theoretische Untersuchungen an hochgequollenen hydrogelen. PhD thesis, Institut für Textil und Faserchemie der Universität Stuttgart Schröder UP (1994) Experimentelle und theoretische Untersuchungen an hochgequollenen hydrogelen. PhD thesis, Institut für Textil und Faserchemie der Universität Stuttgart
go back to reference Schröder UP, Oppermann W (1996) Properties of polylectrolyte gels. In: Cohen Addad JP, de Gennes P-J (eds) Physical properties of polymeric gels. Wiley, Chichester, pp 19–38 Schröder UP, Oppermann W (1996) Properties of polylectrolyte gels. In: Cohen Addad JP, de Gennes P-J (eds) Physical properties of polymeric gels. Wiley, Chichester, pp 19–38
go back to reference Shahinpoor M (1994) Continuum electromechanics of ionic polymer gels as artificial muscles for robotic applications. Smart Mater Struct 3:367–372CrossRef Shahinpoor M (1994) Continuum electromechanics of ionic polymer gels as artificial muscles for robotic applications. Smart Mater Struct 3:367–372CrossRef
go back to reference Shiga T, Kurauchi T (1990) Deformation of polyelectrolyte gels under the influence of electric field. J Appl Polym Sci 39:2305–2320CrossRef Shiga T, Kurauchi T (1990) Deformation of polyelectrolyte gels under the influence of electric field. J Appl Polym Sci 39:2305–2320CrossRef
go back to reference Sun DN, Gu WY, Guo XE, Lai WM, Mow VC (1999) A mixed finite element formulation of triphasic mechano-electrochemical theory for charged, hydrated biological soft tissues. Int J Num Meth Eng 45(10):1375–1402CrossRef Sun DN, Gu WY, Guo XE, Lai WM, Mow VC (1999) A mixed finite element formulation of triphasic mechano-electrochemical theory for charged, hydrated biological soft tissues. Int J Num Meth Eng 45(10):1375–1402CrossRef
go back to reference Tabatabaei F, Lenz O, Holm C (2011) Simulational study of anomalous tracer diffusion in hydrogels. Colloid Polym Sci 289(5–6):523–534CrossRef Tabatabaei F, Lenz O, Holm C (2011) Simulational study of anomalous tracer diffusion in hydrogels. Colloid Polym Sci 289(5–6):523–534CrossRef
go back to reference Tamagawa H, Taya M (2000) A theoretical prediction of the ions distribution in an amphoteric polymer gel. Mater Sci Eng A 285(1–2):314–325CrossRef Tamagawa H, Taya M (2000) A theoretical prediction of the ions distribution in an amphoteric polymer gel. Mater Sci Eng A 285(1–2):314–325CrossRef
go back to reference Tanaka T, Fillmore DJ (1979) Kinetics of swelling of gels. J Chem Phys 70(3):1214–1218CrossRef Tanaka T, Fillmore DJ (1979) Kinetics of swelling of gels. J Chem Phys 70(3):1214–1218CrossRef
go back to reference Tanaka T, Nishio I, Sun S-T, Ueno-Nishio S (1982) Collapse of gels in an electric field. Science 218:467–469CrossRef Tanaka T, Nishio I, Sun S-T, Ueno-Nishio S (1982) Collapse of gels in an electric field. Science 218:467–469CrossRef
go back to reference Treloar LRG (1958) The physics of rubber elasticity. Oxford University Press, Oxford Treloar LRG (1958) The physics of rubber elasticity. Oxford University Press, Oxford
go back to reference Truesdell C, Noll W (2003) The non-linear field theories of mechanics. Springer, Berlin Truesdell C, Noll W (2003) The non-linear field theories of mechanics. Springer, Berlin
go back to reference Umemoto S, Okui N, Sakai T (1991) Contraction behavior of poly(acrylonitrile) gel fibers. In: Rossi DD, Kajiwara K, Osada Y, Yamauchi A (eds) Polymer gels – fundamentals and biomedical applications. Plenum Press, New York/London, pp 257–270 Umemoto S, Okui N, Sakai T (1991) Contraction behavior of poly(acrylonitrile) gel fibers. In: Rossi DD, Kajiwara K, Osada Y, Yamauchi A (eds) Polymer gels – fundamentals and biomedical applications. Plenum Press, New York/London, pp 257–270
go back to reference van Loon R, Huyghe JM, Wijlaars MW, Baaijens FPT (2003) 3D FE implementation of an incompressible quadriphasic mixture model. Int J Num Meth Eng 57(9):1243–1258CrossRef van Loon R, Huyghe JM, Wijlaars MW, Baaijens FPT (2003) 3D FE implementation of an incompressible quadriphasic mixture model. Int J Num Meth Eng 57(9):1243–1258CrossRef
go back to reference Wallmersperger T, Ballhause D (2008) Coupled chemo-electro-mechanical finite element simulation of hydrogels: II. Electrical stimulation. Smart Mater Struct 17(4):045012CrossRef Wallmersperger T, Ballhause D (2008) Coupled chemo-electro-mechanical finite element simulation of hydrogels: II. Electrical stimulation. Smart Mater Struct 17(4):045012CrossRef
go back to reference Wallmersperger T, Kröplin B, Gülch RW (2004) Coupled chemo-electro-mechanical formulation for ionic polymer gels – numerical and experimental investigations. Mech Mater 36(5–6):411–420CrossRef Wallmersperger T, Kröplin B, Gülch RW (2004) Coupled chemo-electro-mechanical formulation for ionic polymer gels – numerical and experimental investigations. Mech Mater 36(5–6):411–420CrossRef
go back to reference Wallmersperger T, Wittel FK, D’Ottavio M, Kröplin B (2008) Multiscale modeling of polymer gels – chemo-electric model versus discrete element model. Mech Adv Mater Struct 15(3–4):228–234CrossRef Wallmersperger T, Wittel FK, D’Ottavio M, Kröplin B (2008) Multiscale modeling of polymer gels – chemo-electric model versus discrete element model. Mech Adv Mater Struct 15(3–4):228–234CrossRef
go back to reference Wallmersperger T, Attaran A, Keller K, Brummund J, Guenther M, Gerlach G (2013) Modeling and simulation of hydrogels for the application as bending actuators. In: Gabriele S, Walter R (eds) Progress in colloid and polymer science, vol 140. Springer, Berlin, pp 189–204 Wallmersperger T, Attaran A, Keller K, Brummund J, Guenther M, Gerlach G (2013) Modeling and simulation of hydrogels for the application as bending actuators. In: Gabriele S, Walter R (eds) Progress in colloid and polymer science, vol 140. Springer, Berlin, pp 189–204
go back to reference Walter J, Ermatchkov V, Vrabec J, Hasse H (2010) Molecular dynamics and experimental study of conformation change of poly(n-isopropylacrylamide) hydrogels in water. Fluid Phase Equilib 296:164–172CrossRef Walter J, Ermatchkov V, Vrabec J, Hasse H (2010) Molecular dynamics and experimental study of conformation change of poly(n-isopropylacrylamide) hydrogels in water. Fluid Phase Equilib 296:164–172CrossRef
go back to reference Weeber R, Kantorovich S, Holm C (2012) Deformation mechanisms in 2D magnetic gels studied by computer simulations. Soft Matter 8:9923–9932CrossRef Weeber R, Kantorovich S, Holm C (2012) Deformation mechanisms in 2D magnetic gels studied by computer simulations. Soft Matter 8:9923–9932CrossRef
Metadata
Title
Polymer Gels as EAPs: Models
Authors
Thomas Wallmersperger
Peter Leichsenring
Copyright Year
2016
DOI
https://doi.org/10.1007/978-3-319-31530-0_3