Skip to main content
Top

2019 | OriginalPaper | Chapter

2. Polymers from Renewable Resources

Authors : Heather Goldsborough, Victoria V. Volkis

Published in: Functional Biopolymers

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Plastics are an indispensable part of our daily life but also have many applications in electronics, medicine, and environmental protection. Traditional plastic industry consumes about 7% of the global production of fossil fuel. As the nonrenewable fossil fuel will exhaust within the next century, the development of green polymers from renewable natural resources will play an ever-increasing role for future generations toward a sustainable society. Some of natural polymers such as cellulose, for example, have a very long history of use without major modifications. Others are newer. This chapter provides a brief review of alternative plastic materials from renewable sources, such as polysaccharides, lignin, biomass and bio-oils, tannin, cellulose, and many others. The application of those materials is getting wider and wider, and they can replace many of traditional plastics. In addition, the use of much “greener” plastics from renewable resources contributes to reducing the environmental impact of fuels and other petrochemical products and traditional plastics, which are responsible for atmospheric pollution and for the increasing level of greenhouse gases that are the main reasons for global warming.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference M.L. Tschan, E. Brulé, P. Haquette, C.M. Thomas, Synthesis of biodegradable polymers from renewable resources. Polym. Chem. 3, 836–851 (2012)CrossRef M.L. Tschan, E. Brulé, P. Haquette, C.M. Thomas, Synthesis of biodegradable polymers from renewable resources. Polym. Chem. 3, 836–851 (2012)CrossRef
2.
go back to reference (A) A. Corma, S. Iborra, A. Velty, Chemical routes for the transformation of biomass into chemicals. Chem. Rev. 107, 2411–2502 (2007). (B) F. Cherubini, The biorefinery concept: using biomass instead of oil for producing energy and chemicals. Energy Convers. Manag. 51, 1412–1421 (2010) (A) A. Corma, S. Iborra, A. Velty, Chemical routes for the transformation of biomass into chemicals. Chem. Rev. 107, 2411–2502 (2007). (B) F. Cherubini, The biorefinery concept: using biomass instead of oil for producing energy and chemicals. Energy Convers. Manag. 51, 1412–1421 (2010)
3.
go back to reference A. Gandini, Polymers from renewable resources: a challenge for the future of macromolecular materials. Macromolecules 41(24), 9491–9504 (2008)CrossRef A. Gandini, Polymers from renewable resources: a challenge for the future of macromolecular materials. Macromolecules 41(24), 9491–9504 (2008)CrossRef
4.
go back to reference A. Gandini, T.M. Lacerda, From monomers to polymers from renewable resources: recent advances. Prog. Polym. Sci. 48, 1–39 (2015)CrossRef A. Gandini, T.M. Lacerda, From monomers to polymers from renewable resources: recent advances. Prog. Polym. Sci. 48, 1–39 (2015)CrossRef
5.
go back to reference L. Shen, E. Worrell, M. Patel, Present and future development in plastics from biomass. Biofuels Bioprod. Biorefin. 4, 25–40 (2010)CrossRef L. Shen, E. Worrell, M. Patel, Present and future development in plastics from biomass. Biofuels Bioprod. Biorefin. 4, 25–40 (2010)CrossRef
7.
go back to reference M.N. Belgacem, A. Gandini (ed.), Monomers, Polymers and Composites from Renewable Resources (Elsevier, 2008), pp. 17–115. ISBN: 978-0-08-045316-3. Chapters 2–5 M.N. Belgacem, A. Gandini (ed.), Monomers, Polymers and Composites from Renewable Resources (Elsevier, 2008), pp. 17–115. ISBN: 978-0-08-045316-3. Chapters 2–5
8.
go back to reference (A) L. Avérous, E. Pollet, Biodegradable polymers. Environmental Silicate Nano-Biocomposites, eds. by L. Avérous, E. Pollet (Springer, London, 2012), pp. 13–39. (B) R.P. Babu, K. O’Connor, R. Seeram, Current progress on bio-based polymers and their future trends. Prog. Biomater. 2, 1–16 (2013) (A) L. Avérous, E. Pollet, Biodegradable polymers. Environmental Silicate Nano-Biocomposites, eds. by L. Avérous, E. Pollet (Springer, London, 2012), pp. 13–39. (B) R.P. Babu, K. O’Connor, R. Seeram, Current progress on bio-based polymers and their future trends. Prog. Biomater. 2, 1–16 (2013)
9.
go back to reference A.J.F. Carvalho, Chapter 15: Starch: major sources, properties and applications as thermoplastic materials, in Monomers, Polymers and Composites from Renewable Resources, ed. by M.N. Belgacem, A. Gandini (Elsevier, 2008), pp. 321–342. ISBN: 978-0-08-045316-3 A.J.F. Carvalho, Chapter 15: Starch: major sources, properties and applications as thermoplastic materials, in Monomers, Polymers and Composites from Renewable Resources, ed. by M.N. Belgacem, A. Gandini (Elsevier, 2008), pp. 321–342. ISBN: 978-0-08-045316-3
10.
go back to reference M. Henriksson, L.A. Berglund, P. Isaksson, T. Lindstrom, T. Nishino, Biomacromolecules 9, 1579 (2008)CrossRef M. Henriksson, L.A. Berglund, P. Isaksson, T. Lindstrom, T. Nishino, Biomacromolecules 9, 1579 (2008)CrossRef
11.
go back to reference A.J.F. Carvalho, A.A.S. Curvelo, A. Gandini, Ind. Crop. Prod. 21, 331 (2005)CrossRef A.J.F. Carvalho, A.A.S. Curvelo, A. Gandini, Ind. Crop. Prod. 21, 331 (2005)CrossRef
15.
go back to reference (a) P. Tomasik, C.H. Schilling, Adv. Carbohydr. Chem. Biochem. 59, 175 (2004). (b) K.F. Gotlieb, A. Capelle (eds.), Starch DeriVatization; Fascinating and Unique Industrial Opportunities (Wageningen Academic Publ., Wageningen, 2005) (a) P. Tomasik, C.H. Schilling, Adv. Carbohydr. Chem. Biochem. 59, 175 (2004). (b) K.F. Gotlieb, A. Capelle (eds.), Starch DeriVatization; Fascinating and Unique Industrial Opportunities (Wageningen Academic Publ., Wageningen, 2005)
16.
go back to reference (a) C.S.R. Freire, A.J.D. Silvestre, C. Pascoal Neto, M.N. Belgacem, A.J. Gandini, Appl. Polym. Sci. 100, 1093 (2006). (b) D. Pasquini, M.N. Belgacem, A. Gandini, A.A.S. Curvelo, J. Colloid Interf. Sci. 295, 79 (2006) (a) C.S.R. Freire, A.J.D. Silvestre, C. Pascoal Neto, M.N. Belgacem, A.J. Gandini, Appl. Polym. Sci. 100, 1093 (2006). (b) D. Pasquini, M.N. Belgacem, A. Gandini, A.A.S. Curvelo, J. Colloid Interf. Sci. 295, 79 (2006)
17.
go back to reference M. Castellano, P. Fabbri, A. Gandini, M.N. Belgacem, J. Colloid Interf. Sci. 273, 505 (2004)CrossRef M. Castellano, P. Fabbri, A. Gandini, M.N. Belgacem, J. Colloid Interf. Sci. 273, 505 (2004)CrossRef
18.
go back to reference (a) K. Petzold, A. Koschella, D. Klemm, B. Heublein, Cellulose. 10, 251 (2003). (b) W. Mormann, Cellulose. 10, 271 (2003) (a) K. Petzold, A. Koschella, D. Klemm, B. Heublein, Cellulose. 10, 251 (2003). (b) W. Mormann, Cellulose. 10, 271 (2003)
19.
go back to reference (a) C. Goussé, H. Chanzy, G. Escoffier, L. Soubeyrand, E. Fleury, Polymer. 43, 2645 (2002). (b) C. Goussé, H. Chanzy, M.L. Cerrada, Macromolecules. 41, 2008, 9503 Fleury, E. Polymer 45, 1569 (2004). (c) M. Andresen, L.S. Johansson, B.S. Tanem, P. Stenius, Cellulose. 13, 665 (2006) (a) C. Goussé, H. Chanzy, G. Escoffier, L. Soubeyrand, E. Fleury, Polymer. 43, 2645 (2002). (b) C. Goussé, H. Chanzy, M.L. Cerrada, Macromolecules. 41, 2008, 9503 Fleury, E. Polymer 45, 1569 (2004). (c) M. Andresen, L.S. Johansson, B.S. Tanem, P. Stenius, Cellulose. 13, 665 (2006)
20.
go back to reference P. Fabbri, G. Champon, M. Castellano, M.N. Belgacem, A. Gandini, Polym. Int. 53, 7 (2004)CrossRef P. Fabbri, G. Champon, M. Castellano, M.N. Belgacem, A. Gandini, Polym. Int. 53, 7 (2004)CrossRef
22.
go back to reference A. Gandini, A.A.S. Curvelo, D. Pasquini, A. de Menezes, J. Polymer. 46, 10611 (2005)CrossRef A. Gandini, A.A.S. Curvelo, D. Pasquini, A. de Menezes, J. Polymer. 46, 10611 (2005)CrossRef
23.
go back to reference A. Gandini, A.A.S. Curvelo, D. Pasquini, A. de Menezes, J. Biomacromolecules 8, 2047 (2007)CrossRef A. Gandini, A.A.S. Curvelo, D. Pasquini, A. de Menezes, J. Biomacromolecules 8, 2047 (2007)CrossRef
24.
go back to reference (a) A.G. Cunha, C.S.R. Freire, A.J.D. Silvestre, C. Pacoal Neto, A. Gandini, J. Colloid Interf. Sci. 301, 333 (2006). (b) A.G. Cunha, C.S.R. Freire, A.J.D. Silvestre, C. Pacoal Neto, A. Gandini, E. Orblin, P. Fardim, Biomacromolecules. 8, 1347 (2007). (c) A.G. Cunha, C.S.R. Freire, A.J.D. Silvestre, C. Pacoal Neto, A. Gandini, E. Orblin, P. Fardim, Langmuir. 23, 10801 (2007). (d) A.G. Cunha, C.S.R. Freire, A.J.D. Silvestre, C. Pacoal Neto, A. Gandini, E. Orblin, P. Fardim, J. Colloid Interf. Sci. 316, 360 (2007) (a) A.G. Cunha, C.S.R. Freire, A.J.D. Silvestre, C. Pacoal Neto, A. Gandini, J. Colloid Interf. Sci. 301, 333 (2006). (b) A.G. Cunha, C.S.R. Freire, A.J.D. Silvestre, C. Pacoal Neto, A. Gandini, E. Orblin, P. Fardim, Biomacromolecules. 8, 1347 (2007). (c) A.G. Cunha, C.S.R. Freire, A.J.D. Silvestre, C. Pacoal Neto, A. Gandini, E. Orblin, P. Fardim, Langmuir. 23, 10801 (2007). (d) A.G. Cunha, C.S.R. Freire, A.J.D. Silvestre, C. Pacoal Neto, A. Gandini, E. Orblin, P. Fardim, J. Colloid Interf. Sci. 316, 360 (2007)
25.
go back to reference M.N. Belgacem, A. Gandini (ed.), Chapter 9: Lignins: major sources, structure and properties, in Monomers, Polymers and Composites from Renewable Resources, ed. by G.H. Gellerstedt (Elsevier, 2008). pp 201–224. ISBN: 978-0-08-045316-3 M.N. Belgacem, A. Gandini (ed.), Chapter 9: Lignins: major sources, structure and properties, in Monomers, Polymers and Composites from Renewable Resources, ed. by G.H. Gellerstedt (Elsevier, 2008). pp 201–224. ISBN: 978-0-08-045316-3
26.
go back to reference Chapter 10: Lora, Industrial commercial lignins: sources, properties and applications, in Monomers, Polymers and Composites from Renewable Resources, ed. by M.N. Belgacem, A. Gandini (Elsevier, 2008). pp. 225–236. ISBN: 978-0-08-045316-3 Chapter 10: Lora, Industrial commercial lignins: sources, properties and applications, in Monomers, Polymers and Composites from Renewable Resources, ed. by M.N. Belgacem, A. Gandini (Elsevier, 2008). pp. 225–236. ISBN: 978-0-08-045316-3
27.
go back to reference T.Q. Hu (ed.), Chemical Modification, Properties and Usage of Lignin, ACS Symp. Ser. (Kluwer, New York, 2007), p. 954 T.Q. Hu (ed.), Chemical Modification, Properties and Usage of Lignin, ACS Symp. Ser. (Kluwer, New York, 2007), p. 954
28.
go back to reference (a) S. Kubo, J.F. Kadla, J. Polym. EnViron. 13, 97 (2005). (b) J.L. Braun, K.M. Holtman, J.F. Kadla, Carbon. 43, 385 (2005) (a) S. Kubo, J.F. Kadla, J. Polym. EnViron. 13, 97 (2005). (b) J.L. Braun, K.M. Holtman, J.F. Kadla, Carbon. 43, 385 (2005)
29.
go back to reference (51) A. Gandini, A.F. Sousa, A.J.D. Silvestre, C. Pascoal Neto, submitted for publication (51) A. Gandini, A.F. Sousa, A.J.D. Silvestre, C. Pascoal Neto, submitted for publication
30.
go back to reference (a) H. Pelletier, N. Belgacem, A. Gandini, J. Appl. Polym. Sci. 99, 3218 (2006). (b) H. Pelletier, A. Gandini, Eur. J. Lipid Sci. Technol. 108, 411 (2006) (a) H. Pelletier, N. Belgacem, A. Gandini, J. Appl. Polym. Sci. 99, 3218 (2006). (b) H. Pelletier, A. Gandini, Eur. J. Lipid Sci. Technol. 108, 411 (2006)
31.
go back to reference A. Moubarik, A. Allal, A. Pizzi, F. Charrier, B. Charrier. Characterization of a formaldehyde-free cornstarch-tannin wood adhesive for interior plywood. Eur. J. Wood Wood Prod. 68(4), 427–433 (2009). Springer A. Moubarik, A. Allal, A. Pizzi, F. Charrier, B. Charrier. Characterization of a formaldehyde-free cornstarch-tannin wood adhesive for interior plywood. Eur. J. Wood Wood Prod. 68(4), 427–433 (2009). Springer
32.
go back to reference A. Moubarik, B. Charrier, A. Allal, F. Charrier, A. Pizzi. Development and optimization of a new formaldehyde-free cornstarch and tannin wood adhesive. Eur. J. Wood Wood Prod. 68(2), 167–177 (2009). Springer A. Moubarik, B. Charrier, A. Allal, F. Charrier, A. Pizzi. Development and optimization of a new formaldehyde-free cornstarch and tannin wood adhesive. Eur. J. Wood Wood Prod. 68(2), 167–177 (2009). Springer
33.
go back to reference (a) M.N. Belgacem, A. Gandini, Prog. Polym. Sci. 22, 1203 (1997). (b) C. Moreau, A. Gandini, M.N. Belgacem, Top. Catal. 27, 9 (2004). (c) A. Gandini, M.N. Belgacem Furan Derivatives and Furan Chemistry at the Service of Macromolecular Materials. In ref 1, Chapter 6 (a) M.N. Belgacem, A. Gandini, Prog. Polym. Sci. 22, 1203 (1997). (b) C. Moreau, A. Gandini, M.N. Belgacem, Top. Catal. 27, 9 (2004). (c) A. Gandini, M.N. Belgacem Furan Derivatives and Furan Chemistry at the Service of Macromolecular Materials. In ref 1, Chapter 6
34.
35.
go back to reference J. Spiridon, V. I. Popa, Chapter 12: Hemicelluloses: major sources, properties and applications, in Monomers, Polymers and Composites from Renewable Resources, ed. by M.N. Belgacem, A. Gandini (Elsevier, 2008). pp. 289–305. ISBN: 978-0-08-045316-3 J. Spiridon, V. I. Popa, Chapter 12: Hemicelluloses: major sources, properties and applications, in Monomers, Polymers and Composites from Renewable Resources, ed. by M.N. Belgacem, A. Gandini (Elsevier, 2008). pp. 289–305. ISBN: 978-0-08-045316-3
37.
go back to reference E. Pecoraro, D. Manzani, Y. Messadeqq, S.J.L. Ribeiro, Chapter 17: Bacterial cellulose from glucanace-tobacter xylinus: preparation, properties and applications, in Monomers, Polymers and Composites from Renewable Resources, ed. by M.N. Belgacem, A. Gandini (Elsevier, 2008). ISBN: 978-0-08-045316-3 E. Pecoraro, D. Manzani, Y. Messadeqq, S.J.L. Ribeiro, Chapter 17: Bacterial cellulose from glucanace-tobacter xylinus: preparation, properties and applications, in Monomers, Polymers and Composites from Renewable Resources, ed. by M.N. Belgacem, A. Gandini (Elsevier, 2008). ISBN: 978-0-08-045316-3
38.
go back to reference (a) E.E. Brown, M.-P.G. Laborie, Biomacromolecules 8, 3074 (2007). (b) S. Ifuku, M. Nogi, K. Abe, K. Handa, F. Nakatsubo, H. Yano, Biomacromolecules 8, 1973 (2007). (c) M. Pommet, J. Juntaro, J.Y.Y. Heng, A. Mantalaris, A.F. Lee, K. Wilson, G. Kalinka, M.S.P. Shaffer, A. Bismarck, Biomacromolecules 9, 1643 (2008) (a) E.E. Brown, M.-P.G. Laborie, Biomacromolecules 8, 3074 (2007). (b) S. Ifuku, M. Nogi, K. Abe, K. Handa, F. Nakatsubo, H. Yano, Biomacromolecules 8, 1973 (2007). (c) M. Pommet, J. Juntaro, J.Y.Y. Heng, A. Mantalaris, A.F. Lee, K. Wilson, G. Kalinka, M.S.P. Shaffer, A. Bismarck, Biomacromolecules 9, 1643 (2008)
39.
go back to reference P.A. Wilbon, F. Chu, C. Tang, Progress in renewable polymers from natural terpenes, Terpenoids, and rosin. Macromol. Rapid Commun. 34, 8–37 (2013)CrossRef P.A. Wilbon, F. Chu, C. Tang, Progress in renewable polymers from natural terpenes, Terpenoids, and rosin. Macromol. Rapid Commun. 34, 8–37 (2013)CrossRef
40.
go back to reference M. Rinaudo, Chitin and chitosan: properties and applications. Prog. Polym. Sci. 31, 603–632 (2006) M. Rinaudo, Chitin and chitosan: properties and applications. Prog. Polym. Sci. 31, 603–632 (2006)
42.
go back to reference N. Kazami et al., A simple procedure for preparing chitin oligomers through acetone precipitation after hydrolysis in concentrated hydrochloric acid. Carbohydr. Polym. 132(2015), 304–310 (2015)CrossRef N. Kazami et al., A simple procedure for preparing chitin oligomers through acetone precipitation after hydrolysis in concentrated hydrochloric acid. Carbohydr. Polym. 132(2015), 304–310 (2015)CrossRef
43.
go back to reference G. Roberts, Thirty years of progress in chitin and chitosan. Prog. Chem. Appl. Chitin Deriv. 13(13), 1–15 (2008) G. Roberts, Thirty years of progress in chitin and chitosan. Prog. Chem. Appl. Chitin Deriv. 13(13), 1–15 (2008)
44.
go back to reference NASA, www.climate.nasa.gov/effects. IPCC 2007, Summary for Policymakers, in Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge University Press, Cambridge, UK, 2007), p. 17 NASA, www.​climate.​nasa.​gov/​effects. IPCC 2007, Summary for Policymakers, in Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge University Press, Cambridge, UK, 2007), p. 17
45.
go back to reference S.-O. Fernandez-Kim, Physicochemical and Functional Properties of Crawfish Chitosan as Affected by Different Processing Protocols, B.S. Thesis, Seoul National University, 2004 S.-O. Fernandez-Kim, Physicochemical and Functional Properties of Crawfish Chitosan as Affected by Different Processing Protocols, B.S. Thesis, Seoul National University, 2004
46.
go back to reference E. Salleh, I. Muhamad, N. Khairuddin, Preparation, characterization and antimicrobial analysis of antimicrobial starch based film incorporated with chitosan and lauric acid. Asian Chitin J. 3, 55–68 (2007) E. Salleh, I. Muhamad, N. Khairuddin, Preparation, characterization and antimicrobial analysis of antimicrobial starch based film incorporated with chitosan and lauric acid. Asian Chitin J. 3, 55–68 (2007)
47.
go back to reference B. Carreno-Gomez, R. Duncan, Evaluation of the biological properties of soluble chitosan and chitosan microspheres. Int. J. PharmacoEconomics 148, 231–240 (1997)CrossRef B. Carreno-Gomez, R. Duncan, Evaluation of the biological properties of soluble chitosan and chitosan microspheres. Int. J. PharmacoEconomics 148, 231–240 (1997)CrossRef
48.
go back to reference W.R. Chen, R.L. Adams, R. Carubelli, R.E. Nordquist, Laser-photosensitizer assisted immunotherapy: a novel modality for cancer treatment. Cancer Lett. 115, 25–30 (1997)CrossRef W.R. Chen, R.L. Adams, R. Carubelli, R.E. Nordquist, Laser-photosensitizer assisted immunotherapy: a novel modality for cancer treatment. Cancer Lett. 115, 25–30 (1997)CrossRef
49.
go back to reference K. Nishimura, S. Nishimura, N. Nishi, I. Saiki, S. Tokura, I. Azuma, Immunological activity of chitin and its derivatives. Vaccine 2, 93–99 (1984)CrossRef K. Nishimura, S. Nishimura, N. Nishi, I. Saiki, S. Tokura, I. Azuma, Immunological activity of chitin and its derivatives. Vaccine 2, 93–99 (1984)CrossRef
50.
go back to reference J. Venkatesan, S.-K. Kim, Chitosan composites for bone tissue engineering – an overview. Mar. Drugs 8, 2252–2266 (2010)CrossRef J. Venkatesan, S.-K. Kim, Chitosan composites for bone tissue engineering – an overview. Mar. Drugs 8, 2252–2266 (2010)CrossRef
51.
go back to reference K. Rezwan, Q. Chen, J. Blaker, A.R. Boccaccini, Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials 27, 3413–3431 (2006)CrossRef K. Rezwan, Q. Chen, J. Blaker, A.R. Boccaccini, Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials 27, 3413–3431 (2006)CrossRef
52.
go back to reference D.K. Singh, A.R. Ray, Biomedical applications of chitin, chitosan, and their derivatives. J. Macromol. Sci. C 40, 69–83 (2000)CrossRef D.K. Singh, A.R. Ray, Biomedical applications of chitin, chitosan, and their derivatives. J. Macromol. Sci. C 40, 69–83 (2000)CrossRef
53.
go back to reference R. Jayakumar, D. Menon, K. Manzoor, S. Nair, H. Tamura, Biomedical applications of chitin and chitosan based nanomaterials – A short review. Carbohydr. Polym. 82, 227–232 (2010)CrossRef R. Jayakumar, D. Menon, K. Manzoor, S. Nair, H. Tamura, Biomedical applications of chitin and chitosan based nanomaterials – A short review. Carbohydr. Polym. 82, 227–232 (2010)CrossRef
54.
go back to reference L.G. Griffith, G. Naughton, Tissue engineering–current challenges and expanding opportunities. Sci. Signal. 295, 1009 (2002) L.G. Griffith, G. Naughton, Tissue engineering–current challenges and expanding opportunities. Sci. Signal. 295, 1009 (2002)
55.
go back to reference M.-H. Ho, P.-Y. Kuo, H.-J. Hsieh, T.-Y. Hsien, L.-T. Hou, J.-Y. Lai, D.-M. Wang, Preparation of porous scaffolds by using freeze-extraction and freeze-gelation methods. Biomaterials 25, 129–138 (2004)CrossRef M.-H. Ho, P.-Y. Kuo, H.-J. Hsieh, T.-Y. Hsien, L.-T. Hou, J.-Y. Lai, D.-M. Wang, Preparation of porous scaffolds by using freeze-extraction and freeze-gelation methods. Biomaterials 25, 129–138 (2004)CrossRef
56.
go back to reference Z. Li, L. Yubao, Y. Aiping, P. Xuelin, W. Xuejiang, Z. Xiang, Preparation and in vitro investigation of chitosan/nano-hydroxyapatite composite used as bone substitute materials. J. Mater. Sci. 16, 213–219 (2005) Z. Li, L. Yubao, Y. Aiping, P. Xuelin, W. Xuejiang, Z. Xiang, Preparation and in vitro investigation of chitosan/nano-hydroxyapatite composite used as bone substitute materials. J. Mater. Sci. 16, 213–219 (2005)
57.
go back to reference R. Hejazi, M. Amiji, Chitosan-based gastrointestinal delivery systems. J. Control. Release 89, 151–165 (2003)CrossRef R. Hejazi, M. Amiji, Chitosan-based gastrointestinal delivery systems. J. Control. Release 89, 151–165 (2003)CrossRef
58.
go back to reference W. Tiyaboonchai, Chitosan nanoparticles: a promising system for drug delivery. Naresuan Univ, J 11, 51–66 (2003) W. Tiyaboonchai, Chitosan nanoparticles: a promising system for drug delivery. Naresuan Univ, J 11, 51–66 (2003)
59.
go back to reference M. Prabaharan, J. Mano, Chitosan-based particles as controlled drug delivery systems. Drug Deliv. 12, 41–57 (2004)CrossRef M. Prabaharan, J. Mano, Chitosan-based particles as controlled drug delivery systems. Drug Deliv. 12, 41–57 (2004)CrossRef
60.
go back to reference S. Surini, H. Akiyama, M. Morishita, T. Nagai, K. Takayama, Release phenomena of insulin from an implantable device composed of a polyion complex of chitosan and sodium hyaluronate. J. Control. Release 90, 291 (2003)CrossRef S. Surini, H. Akiyama, M. Morishita, T. Nagai, K. Takayama, Release phenomena of insulin from an implantable device composed of a polyion complex of chitosan and sodium hyaluronate. J. Control. Release 90, 291 (2003)CrossRef
61.
go back to reference M.V. Bernado, M.D. Blanco, R.L. Sastre, C. Teijon, J.M. Teijon, Sustained release of bupivacaine from devices based on chitosan. II Farmaco 58, 1187 (2003)CrossRef M.V. Bernado, M.D. Blanco, R.L. Sastre, C. Teijon, J.M. Teijon, Sustained release of bupivacaine from devices based on chitosan. II Farmaco 58, 1187 (2003)CrossRef
62.
go back to reference A. Domard, M. Domard, Chitosan: Structure-Properties Relationship and Biomedical Applications, Polymeric Biomaterials, 2nd edn., ed. by S. Dumitriu (Marcel Dekker, New York, 2003) A. Domard, M. Domard, Chitosan: Structure-Properties Relationship and Biomedical Applications, Polymeric Biomaterials, 2nd edn., ed. by S. Dumitriu (Marcel Dekker, New York, 2003)
63.
go back to reference W.C. Lin, T.Y. Liu, M.C. Yang, Hemocompatibility of polyacrylonitrile dialysis membrane immobilized with chitosan and heparin conjugate. Biomaterials 25(10), 1947–57 (2004) W.C. Lin, T.Y. Liu, M.C. Yang, Hemocompatibility of polyacrylonitrile dialysis membrane immobilized with chitosan and heparin conjugate. Biomaterials 25(10), 1947–57 (2004)
64.
go back to reference P.K. Dutta, P. Vishwanathan, L. Mimrot, M.N.V. Ravikumar, Use of chitosan-amine-oxide gel as drug carriers. J. Polym. Mater. 14, 531 (1997) P.K. Dutta, P. Vishwanathan, L. Mimrot, M.N.V. Ravikumar, Use of chitosan-amine-oxide gel as drug carriers. J. Polym. Mater. 14, 531 (1997)
67.
go back to reference M. Mucha, Rheological characteristics of semi-dilute chitosan solutions. Marcomole Chem. Phys. 198, 471 (1997) M. Mucha, Rheological characteristics of semi-dilute chitosan solutions. Marcomole Chem. Phys. 198, 471 (1997)
68.
go back to reference S.M. Husdon, D.W. Jenkins, Chitin and Chitosan, Encyclopedia of Polymer Science and Technology, 3rd edn. (Wiley Interscience, New York) (Online version, www.interscience.com) S.M. Husdon, D.W. Jenkins, Chitin and Chitosan, Encyclopedia of Polymer Science and Technology, 3rd edn. (Wiley Interscience, New York) (Online version, www.​interscience.​com)
69.
go back to reference R.S. Juang, C.Y. Ju, Kinetics of sorption Cu (II)- ethylenediaminetetraacetic acid chelate anions on crosslinked, polyaminated chitosan beads. Ind. Eng. Chem. Res. 37, 3463 (1998)CrossRef R.S. Juang, C.Y. Ju, Kinetics of sorption Cu (II)- ethylenediaminetetraacetic acid chelate anions on crosslinked, polyaminated chitosan beads. Ind. Eng. Chem. Res. 37, 3463 (1998)CrossRef
70.
go back to reference K.D. Bhavani, P.K. Dutta, Physico-chemical adsorption properties on chitosan for dyehouse effluent. Am. Dyestuff Rep. 88, 53 (1999) K.D. Bhavani, P.K. Dutta, Physico-chemical adsorption properties on chitosan for dyehouse effluent. Am. Dyestuff Rep. 88, 53 (1999)
72.
go back to reference M.H. Ottoy, K.M. Varum, B.E. Christensen, M.W. Anthonsen, O. Smidsrod, Preparative and analytical size-exclusion chromatography of chitosans. Carbohydr. Polym. 31, 253 (1996) M.H. Ottoy, K.M. Varum, B.E. Christensen, M.W. Anthonsen, O. Smidsrod, Preparative and analytical size-exclusion chromatography of chitosans. Carbohydr. Polym. 31, 253 (1996)
73.
go back to reference J. Rhee, M. Jung, K. Paeng, Evaluation of chitin and chitosan as a sorbent for the preconcentration of phenol and chlorophenols in water. Anal. Sci. 14, 1089 (1998)CrossRef J. Rhee, M. Jung, K. Paeng, Evaluation of chitin and chitosan as a sorbent for the preconcentration of phenol and chlorophenols in water. Anal. Sci. 14, 1089 (1998)CrossRef
74.
go back to reference P.K. Dutta, M.N.V. Ravikumar, J. Dutta, Chitin and chitosan for versatile applications. JMS Polym. Rev. C42, 307 (2000) P.K. Dutta, M.N.V. Ravikumar, J. Dutta, Chitin and chitosan for versatile applications. JMS Polym. Rev. C42, 307 (2000)
75.
go back to reference M. G. Peter, A. Dormad, R. A. A. Muzzarelli (eds.), Advances in Chitin Science, vol IV (Universitat Postdam, Postdam, 2005) M. G. Peter, A. Dormad, R. A. A. Muzzarelli (eds.), Advances in Chitin Science, vol IV (Universitat Postdam, Postdam, 2005)
76.
go back to reference J.M.V. Blanshard, Starch granule structure and function: a physiochemical approach, in Starch: Properties and Potential, ed. by T. Galliard (Wiley for SCI, Chichester, 1987), pp. 16–54 J.M.V. Blanshard, Starch granule structure and function: a physiochemical approach, in Starch: Properties and Potential, ed. by T. Galliard (Wiley for SCI, Chichester, 1987), pp. 16–54
77.
go back to reference Y.I. Matveev, V.Y. Grinberg, V.B. Tolstoguzov, The plasticizing effect of water on proteins, polysaccharides and their mixtures: glassy state of biopolymers, food and seeds. Food Hydrocoll. 14, 425–437 (2000)CrossRef Y.I. Matveev, V.Y. Grinberg, V.B. Tolstoguzov, The plasticizing effect of water on proteins, polysaccharides and their mixtures: glassy state of biopolymers, food and seeds. Food Hydrocoll. 14, 425–437 (2000)CrossRef
78.
go back to reference A. Carvalho, A. Job, N. Alves, A. Curvelo, A. Gandini, Thermoplastic starch/natural rubber blends. Carbohydr. Polym. 53, 95–99 (2003)CrossRef A. Carvalho, A. Job, N. Alves, A. Curvelo, A. Gandini, Thermoplastic starch/natural rubber blends. Carbohydr. Polym. 53, 95–99 (2003)CrossRef
79.
go back to reference H. Tsuji, Y. Ikada, Stereocomplex formation between enantiomeric poly(lactic acid)s: XI – mechanical properties and morphology of solution-cast film. Polymer 40, 6699–6708 (1999)CrossRef H. Tsuji, Y. Ikada, Stereocomplex formation between enantiomeric poly(lactic acid)s: XI – mechanical properties and morphology of solution-cast film. Polymer 40, 6699–6708 (1999)CrossRef
80.
go back to reference H. Tsuji, Autocatalytic hydrolysis of amorphous-made polylactides: effects of l-lactide content, tacticity, and enantiomeric polymer blending. Polymer 43, 1789–1796 (2002)CrossRef H. Tsuji, Autocatalytic hydrolysis of amorphous-made polylactides: effects of l-lactide content, tacticity, and enantiomeric polymer blending. Polymer 43, 1789–1796 (2002)CrossRef
81.
go back to reference C.C. Chen, J.Y. Chueh, H. Tseng, H.M. Huang, S.Y. Lee, Preparation and characterization of biodegradable PLA polymeric blends. Biomaterials 24, 1167–1173 (2003)CrossRef C.C. Chen, J.Y. Chueh, H. Tseng, H.M. Huang, S.Y. Lee, Preparation and characterization of biodegradable PLA polymeric blends. Biomaterials 24, 1167–1173 (2003)CrossRef
82.
go back to reference H. Shinoda, Y. Asou, T. Kashima, T. Kato, Y. Tseng, T. Yagi, Amphiphilic biodegradable copolymer, poly(aspartic acid co-lactide): acceleration of degradation rate and improvement of thermal stability for poly(lactic acid), poly(butylene succinate) and poly(e-caprolactone). Polym Degrad Stabil 80, 241–250 (2003)CrossRef H. Shinoda, Y. Asou, T. Kashima, T. Kato, Y. Tseng, T. Yagi, Amphiphilic biodegradable copolymer, poly(aspartic acid co-lactide): acceleration of degradation rate and improvement of thermal stability for poly(lactic acid), poly(butylene succinate) and poly(e-caprolactone). Polym Degrad Stabil 80, 241–250 (2003)CrossRef
83.
go back to reference I. Ohkoshi, H. Abe, Y. Doi, Miscibility and solid-state structures for blends of poly((S)-lactide) with atactic poly((R,S)-3-hydroxybutyrate). Polymer 41, 5985–5992 (2000)CrossRef I. Ohkoshi, H. Abe, Y. Doi, Miscibility and solid-state structures for blends of poly((S)-lactide) with atactic poly((R,S)-3-hydroxybutyrate). Polymer 41, 5985–5992 (2000)CrossRef
84.
go back to reference Y. He, N. Asakawa, J. Li, Y. Inoue, Effects of low molecular weight compounds with hydroxyl groups on properties of poly(l-lactic acid). J. Appl. Polym. Sci. 82, 640–649 (2001)CrossRef Y. He, N. Asakawa, J. Li, Y. Inoue, Effects of low molecular weight compounds with hydroxyl groups on properties of poly(l-lactic acid). J. Appl. Polym. Sci. 82, 640–649 (2001)CrossRef
85.
go back to reference T. Ke, X. Sun, Effect of moisture content and heat treatment on the physical properties of starch and poly(lactic acid) blends. J. Appl. Polym. Sci. 81, 3069–3082 (2001)CrossRef T. Ke, X. Sun, Effect of moisture content and heat treatment on the physical properties of starch and poly(lactic acid) blends. J. Appl. Polym. Sci. 81, 3069–3082 (2001)CrossRef
86.
go back to reference T. Ke, X. Sun, Melting behavior and crystallization kinetics of starch and poly(lactic acid) composites. J. Appl. Polym. Sci. 89, 1203–1211 (2003)CrossRef T. Ke, X. Sun, Melting behavior and crystallization kinetics of starch and poly(lactic acid) composites. J. Appl. Polym. Sci. 89, 1203–1211 (2003)CrossRef
87.
go back to reference H. Wang, X. Sun, P. Seib, Strengthening blends of poly(lactic acid) and starch with methylenediphenyl diisocyanate. J. Appl. Polym. Sci. 82, 1761–1767 (2001)CrossRef H. Wang, X. Sun, P. Seib, Strengthening blends of poly(lactic acid) and starch with methylenediphenyl diisocyanate. J. Appl. Polym. Sci. 82, 1761–1767 (2001)CrossRef
88.
go back to reference J.F. Zhang, X. Sun, Mechanical and thermal properties of poly(lactic acid)/starch blends with dioctyl maleate. J. Appl. Polym. Sci. 94, 1697–1704 (2004)CrossRef J.F. Zhang, X. Sun, Mechanical and thermal properties of poly(lactic acid)/starch blends with dioctyl maleate. J. Appl. Polym. Sci. 94, 1697–1704 (2004)CrossRef
89.
go back to reference T. Ke, X.S. Sun, Starch, poly(lactic acid), and poly(vinyl alcohol) blends. J. Polym. Environ. 11(1), 7–14 (2003)CrossRef T. Ke, X.S. Sun, Starch, poly(lactic acid), and poly(vinyl alcohol) blends. J. Polym. Environ. 11(1), 7–14 (2003)CrossRef
90.
go back to reference R.L. Shogren, W.M. Doane, D. Garlotta, J.W. Lawton, J.L. Willett, Biodegradation of starch/polylactic acid/poly(hydroxyester– ether) composite bars in soil. Polym. Degrad. Stab. 79, 405–411 (2003)CrossRef R.L. Shogren, W.M. Doane, D. Garlotta, J.W. Lawton, J.L. Willett, Biodegradation of starch/polylactic acid/poly(hydroxyester– ether) composite bars in soil. Polym. Degrad. Stab. 79, 405–411 (2003)CrossRef
91.
go back to reference J.L. Willett, R.L. Shogren, Processing and properties of extruded starch/polymer foams. Polymer 43, 5935–5947 (2002)CrossRef J.L. Willett, R.L. Shogren, Processing and properties of extruded starch/polymer foams. Polymer 43, 5935–5947 (2002)CrossRef
92.
go back to reference J.L. Willett, M.A. Kotnis, G.S. O’Brien, G.F. Fanta, S.H. Gordon, Properties of starch–graft–poly(glycidyl methacrylate)– PHBV composites. J. Appl. Polym. Sci. 70, 1121–1127 (1998)CrossRef J.L. Willett, M.A. Kotnis, G.S. O’Brien, G.F. Fanta, S.H. Gordon, Properties of starch–graft–poly(glycidyl methacrylate)– PHBV composites. J. Appl. Polym. Sci. 70, 1121–1127 (1998)CrossRef
93.
go back to reference M. Maekawa, R. Pearce, R.H. Marchessault, R.S.J. Manley, Miscibility and tensile properties of poly(b-hydroxybutyrate)- cellulose propionate blend. Polymer 40, 1501–1505 (1999)CrossRef M. Maekawa, R. Pearce, R.H. Marchessault, R.S.J. Manley, Miscibility and tensile properties of poly(b-hydroxybutyrate)- cellulose propionate blend. Polymer 40, 1501–1505 (1999)CrossRef
94.
go back to reference L. Wang, R.L. Shogren, C. Carriere, Preparation and properties of thermoplastic starch–polyester laminate sheets by coextrusion. Polym. Eng. Sci. 40(2), 499–506 (2000)CrossRef L. Wang, R.L. Shogren, C. Carriere, Preparation and properties of thermoplastic starch–polyester laminate sheets by coextrusion. Polym. Eng. Sci. 40(2), 499–506 (2000)CrossRef
95.
go back to reference M. Wollerdorfer, H. Bader, Influence of natural fibers on the mechanical properties of biodegradable polymers. Ind. Crop. Prod. 8, 105–112 (1998)CrossRef M. Wollerdorfer, H. Bader, Influence of natural fibers on the mechanical properties of biodegradable polymers. Ind. Crop. Prod. 8, 105–112 (1998)CrossRef
96.
go back to reference K. Matsui, F. Larotonda, S. Paes, D. Luiz, A. Pires, J. Laurindo, Cassava bagasse–Kraft paper composites: analysis of influence of impregnation with starch acetate on tensile strength and water absorption properties. Carbohydr. Polym. 55, 237–243 (2004)CrossRef K. Matsui, F. Larotonda, S. Paes, D. Luiz, A. Pires, J. Laurindo, Cassava bagasse–Kraft paper composites: analysis of influence of impregnation with starch acetate on tensile strength and water absorption properties. Carbohydr. Polym. 55, 237–243 (2004)CrossRef
97.
go back to reference J.W. Lawton, R.L. Shogren, K.F. Tiefenbacher, Aspen fiber addition improves the mechanical properties of baked cornstarch foams. Ind. Crop. Prod. 19, 41–47 (2004)CrossRef J.W. Lawton, R.L. Shogren, K.F. Tiefenbacher, Aspen fiber addition improves the mechanical properties of baked cornstarch foams. Ind. Crop. Prod. 19, 41–47 (2004)CrossRef
98.
go back to reference G.M. Ganjyal, N. Reddy, Y.Q. Yang, M.A. Hanna, Biodegradable packaging foams of starch acetate blended with corn stalk fibers. J. Appl. Polym. Sci. 93, 2627–2633 (2004)CrossRef G.M. Ganjyal, N. Reddy, Y.Q. Yang, M.A. Hanna, Biodegradable packaging foams of starch acetate blended with corn stalk fibers. J. Appl. Polym. Sci. 93, 2627–2633 (2004)CrossRef
99.
go back to reference U. Funke, W. Bergthaller, M.G. Lindhauer, Processing and characterization of biodegradable products based on starch. Polym. Degrad. Stab. 59, 293–296 (1998)CrossRef U. Funke, W. Bergthaller, M.G. Lindhauer, Processing and characterization of biodegradable products based on starch. Polym. Degrad. Stab. 59, 293–296 (1998)CrossRef
100.
go back to reference R.A. Shanks, A. Hodzic, S. Wong, Thermoplastic biopolyester natural fiber composites. J. Appl. Polym. Sci. 91(4), 2114–2121 (2004)CrossRef R.A. Shanks, A. Hodzic, S. Wong, Thermoplastic biopolyester natural fiber composites. J. Appl. Polym. Sci. 91(4), 2114–2121 (2004)CrossRef
101.
go back to reference H.M. Park, X. Li, C.Z. Jin, C.Y. Park, W.J. Cho, C.S. Ha, Preparation and properties of biodegradable thermoplastic starch/clay hybrids. Macromol. Mater. Eng. 287(8), 553–558 (2002)CrossRef H.M. Park, X. Li, C.Z. Jin, C.Y. Park, W.J. Cho, C.S. Ha, Preparation and properties of biodegradable thermoplastic starch/clay hybrids. Macromol. Mater. Eng. 287(8), 553–558 (2002)CrossRef
102.
go back to reference S.A. McGlashan, P.J. Halley, Preparation and characterization of biodegradable starch-based nanocomposite materials. Polym. Int. 52, 1767–1773 (2003)CrossRef S.A. McGlashan, P.J. Halley, Preparation and characterization of biodegradable starch-based nanocomposite materials. Polym. Int. 52, 1767–1773 (2003)CrossRef
103.
go back to reference S.B. Kalambur, S.S.H. Rizvi, Starch-based nanocomposites by reactive extrusion processing. Polym. Int. 53(10), 1413–1416 (2004)CrossRef S.B. Kalambur, S.S.H. Rizvi, Starch-based nanocomposites by reactive extrusion processing. Polym. Int. 53(10), 1413–1416 (2004)CrossRef
104.
go back to reference J.-H. Chang, Y.U. An, G.S. Sur, Poly(lactic acid) nanocomposites with various organoclays: I – thermomechanical properties, morphology, and gas permeability. J Polym Sci Part B Polym Phys 41(1), 94–103 (2003)CrossRef J.-H. Chang, Y.U. An, G.S. Sur, Poly(lactic acid) nanocomposites with various organoclays: I – thermomechanical properties, morphology, and gas permeability. J Polym Sci Part B Polym Phys 41(1), 94–103 (2003)CrossRef
Metadata
Title
Polymers from Renewable Resources
Authors
Heather Goldsborough
Victoria V. Volkis
Copyright Year
2019
DOI
https://doi.org/10.1007/978-3-319-95990-0_13

Premium Partners