Skip to main content
Top
Published in: Neural Computing and Applications 14/2022

22-02-2022 | Original Article

Polynomial dendritic neural networks

Authors: Yuwen Chen, Jiang Liu

Published in: Neural Computing and Applications | Issue 14/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Although many artificial neural networks have achieved success in practical applications, there is still a concern among many over their “black box” nature. Why and how do they work? Recently, some interesting interpretations have been made through polynomial regression as an alternative to neural networks. Polynomial networks have thus received more and more attention as generators of polynomial regression. Furthermore, some special polynomial works, such as dendrite net (DD) and Kileel et al.’s deep polynomial neural networks, showed that some single neurons have powerful computability. This agrees with a recent discovery on biological neurons, that is, a single biological neuron can perform XOR operations. Inspired by such works, we propose a new model called the polynomial dendritic neural network (PDN) in this article. The PDN achieves powerful computability on a single neuron in a neural network. The output of a PDN is a high degree polynomial of the inputs. To obtain its parameter values, we took PDN as a neural network and employed the back-propagation method. As shown in this context, PDN contains more polynomial outputs than DD and deep polynomial neural networks. We deliberately studied two special PDNs called the exponential PDN (EPDN) and asymptotic PDN (APDN). For interpretability, we proposed a feature analysis method based on the coefficients of the polynomial outputs of such PDNs. The EPDN and APDN showed satisfactory accuracy, precision, recall, F1 score, and AUC in several experiments. Furthermore, we found the coefficient-based interpretability to be effective on some actual health cases.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Abdelouahab K, Pelcat M, Berry F (2017) Why tanh can be a hardware friendly activation function for CNNs. In: Proceedings of the 11th international conference on distributed smart cameras, pp 199–201 Abdelouahab K, Pelcat M, Berry F (2017) Why tanh can be a hardware friendly activation function for CNNs. In: Proceedings of the 11th international conference on distributed smart cameras, pp 199–201
2.
go back to reference Adebayo J, Gilmer J, Muelly M, Goodfellow I, Hardt M, Kim B (2018) Sanity checks for saliency maps. In: Proceedings of the 32nd international conference on neural information processing systems, NeurIPS’18, pp 9525–9536 Adebayo J, Gilmer J, Muelly M, Goodfellow I, Hardt M, Kim B (2018) Sanity checks for saliency maps. In: Proceedings of the 32nd international conference on neural information processing systems, NeurIPS’18, pp 9525–9536
3.
go back to reference Bahdanau D, Cho K, Bengio Y (2015) Neural machine translation by jointly learning to align and translate. ICLR Bahdanau D, Cho K, Bengio Y (2015) Neural machine translation by jointly learning to align and translate. ICLR
4.
go back to reference Bowman S, Angeli G, Potts C, Manning C (2015) A large annotated corpus for learning natural language inference. In: Proceedings of the 2015 conference on empirical methods in natural language processing, pp 632–642 Bowman S, Angeli G, Potts C, Manning C (2015) A large annotated corpus for learning natural language inference. In: Proceedings of the 2015 conference on empirical methods in natural language processing, pp 632–642
5.
go back to reference Chen X, Duan Y, Houthooft R, Schulman J, Sutskever I, Abbeel P (2016) Infogan: interpretable representation learning by information maximizing generative adversarial nets. In: Proceedings of the 30th international conference on neural information processing systems, pp 2180–2188 Chen X, Duan Y, Houthooft R, Schulman J, Sutskever I, Abbeel P (2016) Infogan: interpretable representation learning by information maximizing generative adversarial nets. In: Proceedings of the 30th international conference on neural information processing systems, pp 2180–2188
6.
go back to reference Dahl G, Yu D, Deng L, Acero A (2011) Context-dependent pre-trained deep neural networks forlarge-vocabulary speech recognition. IEEE Trans Audio Speech Lang Proces 20(1):30–42CrossRef Dahl G, Yu D, Deng L, Acero A (2011) Context-dependent pre-trained deep neural networks forlarge-vocabulary speech recognition. IEEE Trans Audio Speech Lang Proces 20(1):30–42CrossRef
7.
go back to reference Dong Y, Hang S, Zhu J, Bo Z (2017) Improving interpretability of deep neural networks with semantic information. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 4306–4314 Dong Y, Hang S, Zhu J, Bo Z (2017) Improving interpretability of deep neural networks with semantic information. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 4306–4314
8.
go back to reference Emschwiller M, Gamarnik D, Kızıldaǧ E, Zadik I (2020) Neural networks and polynomial regression. Demystifying the overparametrizaiotn phenomena. arXiv preprint arXiv:2003.10523 Emschwiller M, Gamarnik D, Kızıldaǧ E, Zadik I (2020) Neural networks and polynomial regression. Demystifying the overparametrizaiotn phenomena. arXiv preprint arXiv:2003.10523
9.
go back to reference Ghorbani A, Abid A, Zou J (2019) Interpretation of neural networks is fragile. In: Proceedings of the AAAI conference on artificial intelligence, vol 33, issue no 1, pp 3681–3688 Ghorbani A, Abid A, Zou J (2019) Interpretation of neural networks is fragile. In: Proceedings of the AAAI conference on artificial intelligence, vol 33, issue no 1, pp 3681–3688
10.
go back to reference Gidon A, Zolnik TA, Fidzinski P, Bolduan F, Larkum M (2020) Dendritic action potentials and computation in human layer 2/3 cortical neurons. Science 367(6473):83–87CrossRef Gidon A, Zolnik TA, Fidzinski P, Bolduan F, Larkum M (2020) Dendritic action potentials and computation in human layer 2/3 cortical neurons. Science 367(6473):83–87CrossRef
11.
go back to reference Goodfellow I, Bengio Y, Courville A (2016) Deep learning. MIT press (2016) Goodfellow I, Bengio Y, Courville A (2016) Deep learning. MIT press (2016)
12.
go back to reference Guidotti R, Monreale A, Ruggieri S, Turini F, Giannotti F, Pedreschi D (2018) A survey of methods for explaining black box models. ACM Comput Surv 51(5):1–42CrossRef Guidotti R, Monreale A, Ruggieri S, Turini F, Giannotti F, Pedreschi D (2018) A survey of methods for explaining black box models. ACM Comput Surv 51(5):1–42CrossRef
13.
go back to reference He K, Zhang X, Ren S, Sun J (2015) Delving deep into rectifiers: Surpassing human-level performance on imagenet classification. In: Proceedings of the IEEE international conference on computer vision, pp 1026–1034 He K, Zhang X, Ren S, Sun J (2015) Delving deep into rectifiers: Surpassing human-level performance on imagenet classification. In: Proceedings of the IEEE international conference on computer vision, pp 1026–1034
14.
go back to reference Higgins I, Matthey L, Pal A, Burgess C, Glorot X, Botvinick M, Mohamed S, Lerchner A (2017) beta-vae: Learning basic visual concepts with a constrained variational framework. In: 5th International conference on learning representations, conference track proceedings Higgins I, Matthey L, Pal A, Burgess C, Glorot X, Botvinick M, Mohamed S, Lerchner A (2017) beta-vae: Learning basic visual concepts with a constrained variational framework. In: 5th International conference on learning representations, conference track proceedings
15.
go back to reference Huang W, Oh S, Pedrycz W (2014) Design of hybrid radial basis function neural networks (HRBFNNs) realized with the aid of hybridization of fuzzy clustering method (FCM) and polynomial neural networks (PNNs). Neural Netw 60:166–181CrossRef Huang W, Oh S, Pedrycz W (2014) Design of hybrid radial basis function neural networks (HRBFNNs) realized with the aid of hybridization of fuzzy clustering method (FCM) and polynomial neural networks (PNNs). Neural Netw 60:166–181CrossRef
16.
go back to reference Huang G, Liu Z, Laurens V, Weinberger K (2017) Densely connected convolutional networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 4700–4708 Huang G, Liu Z, Laurens V, Weinberger K (2017) Densely connected convolutional networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 4700–4708
17.
18.
go back to reference Hyvarinen A, Oja E (2000) Independent component analysis: algorithms and applications. Neural Netw 13(4):411–430CrossRef Hyvarinen A, Oja E (2000) Independent component analysis: algorithms and applications. Neural Netw 13(4):411–430CrossRef
19.
go back to reference Kileel J, Trager M, Bruna J (2019) On the expressive power of deep polynomial neural networks. Adv Neural Inf Process Syst 32:10310–10319 Kileel J, Trager M, Bruna J (2019) On the expressive power of deep polynomial neural networks. Adv Neural Inf Process Syst 32:10310–10319
20.
go back to reference Kingma D, Ba J (2014) Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 Kingma D, Ba J (2014) Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980
21.
go back to reference Kingma D, Welling M (2013) Auto-encoding variational bayes, 2013. arXiv preprint arXiv:1312.6114 Kingma D, Welling M (2013) Auto-encoding variational bayes, 2013. arXiv preprint arXiv:1312.6114
22.
go back to reference Klambauer G, Unterthiner T, Mayr A, Hochreiter S (2017) Self-normalizing neural networks. In: Proceedings of the 31st international conference on neural information processing systems, pp 972–981 Klambauer G, Unterthiner T, Mayr A, Hochreiter S (2017) Self-normalizing neural networks. In: Proceedings of the 31st international conference on neural information processing systems, pp 972–981
23.
go back to reference Kramer O (2016) Machine learning for evolution strategies, vol 20. Springer, SwitzerlandMATH Kramer O (2016) Machine learning for evolution strategies, vol 20. Springer, SwitzerlandMATH
24.
go back to reference Liu G, Wang J (2021) Dendrite net: a white-box module for classification, regression, and system identification. IEEE Trans Cybern 1–14 Liu G, Wang J (2021) Dendrite net: a white-box module for classification, regression, and system identification. IEEE Trans Cybern 1–14
26.
go back to reference Menon A, Mehrotra K, Mohan C, Ranka S (1996) Characterization of a class of sigmoid functions with applications to neural networks. Neural Netw 9(5):819–835CrossRef Menon A, Mehrotra K, Mohan C, Ranka S (1996) Characterization of a class of sigmoid functions with applications to neural networks. Neural Netw 9(5):819–835CrossRef
27.
go back to reference Park C, Choi E, Han K, Lee H, Rhee T, Lee S, Cha M, Lim W, Kang S, Oh S (2017) Association between adult height, myocardial infarction, heart failure, stroke and death: a Korean nationwide population-based study. Int J Epidemiol 47(1):289–298CrossRef Park C, Choi E, Han K, Lee H, Rhee T, Lee S, Cha M, Lim W, Kang S, Oh S (2017) Association between adult height, myocardial infarction, heart failure, stroke and death: a Korean nationwide population-based study. Int J Epidemiol 47(1):289–298CrossRef
28.
go back to reference Safavian S, Landgrebe D (1991) A survey of decision tree classifier methodology. IEEE Trans Syst Man Cybern 21(3):660–674MathSciNetCrossRef Safavian S, Landgrebe D (1991) A survey of decision tree classifier methodology. IEEE Trans Syst Man Cybern 21(3):660–674MathSciNetCrossRef
29.
go back to reference Sainath T, Vinyals O, Senior A, Sak H (2015) Convolutional, long short-term memory, fully connected deep neural networks. In: 2015 IEEE international conference on acoustics, speech and signal processing (ICASSP), pp 4580–4584 Sainath T, Vinyals O, Senior A, Sak H (2015) Convolutional, long short-term memory, fully connected deep neural networks. In: 2015 IEEE international conference on acoustics, speech and signal processing (ICASSP), pp 4580–4584
30.
go back to reference Selvaraju R, Cogswell M, Das A, Vedantam R, Parikh D, Batra D (2017) Grad-cam: visual explanations from deep networks via gradient-based localization. In: Proceedings of the IEEE international conference on computer vision, pp 618–626 Selvaraju R, Cogswell M, Das A, Vedantam R, Parikh D, Batra D (2017) Grad-cam: visual explanations from deep networks via gradient-based localization. In: Proceedings of the IEEE international conference on computer vision, pp 618–626
31.
go back to reference Simonyan K, Vedaldi A, Zisserman A (2014) Deep inside convolutional networks: Visualising image classification models and saliency maps. In: Workshop at international conference on learning representations Simonyan K, Vedaldi A, Zisserman A (2014) Deep inside convolutional networks: Visualising image classification models and saliency maps. In: Workshop at international conference on learning representations
32.
go back to reference Springenberg J, Dosovitskiy A, Brox T, Riedmiller M (2014) Striving for simplicity: The all convolutional net. arXiv preprint arXiv:1412.6806 Springenberg J, Dosovitskiy A, Brox T, Riedmiller M (2014) Striving for simplicity: The all convolutional net. arXiv preprint arXiv:1412.6806
33.
go back to reference Sundararajan M, Taly A, Yan Q (2016) Gradients of counterfactuals. arXiv preprint arXiv:1611.02639 Sundararajan M, Taly A, Yan Q (2016) Gradients of counterfactuals. arXiv preprint arXiv:1611.02639
34.
go back to reference Sweller J (1988) Cognitive load during problem solving: effects on learning. Cogn Sci 12(2):257–285CrossRef Sweller J (1988) Cognitive load during problem solving: effects on learning. Cogn Sci 12(2):257–285CrossRef
35.
go back to reference Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez A, Kaiser Ł, Polosukhin I (2017) Attention is all you need. In: Advances in neural information processing systems, pp 5998–6008 Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez A, Kaiser Ł, Polosukhin I (2017) Attention is all you need. In: Advances in neural information processing systems, pp 5998–6008
36.
go back to reference Veličković P, Cucurull G, Casanova A, Romero A, Liò P, Bengio Y (2018) Graph attention networks. In: International conference on learning representations Veličković P, Cucurull G, Casanova A, Romero A, Liò P, Bengio Y (2018) Graph attention networks. In: International conference on learning representations
37.
go back to reference Wold S, Esbensen K, Geladi P (1987) Principal component analysis. Chemom Intell Lab Syst 2(1–3):37–52CrossRef Wold S, Esbensen K, Geladi P (1987) Principal component analysis. Chemom Intell Lab Syst 2(1–3):37–52CrossRef
38.
go back to reference Xi C, Khomtchouk B, Matloff N, Mohanty P (2018) Polynomial regression as an alternative to neural nets. arXiv preprint arXiv:1806.06850 Xi C, Khomtchouk B, Matloff N, Mohanty P (2018) Polynomial regression as an alternative to neural nets. arXiv preprint arXiv:1806.06850
39.
go back to reference Yang S, Ho C, Lee C (2006) HBP: improvement in BP algorithm for an adaptive MLP decision feedback equalizer. IEEE Trans Circuits Syst II Express Briefs 53(3):240–244CrossRef Yang S, Ho C, Lee C (2006) HBP: improvement in BP algorithm for an adaptive MLP decision feedback equalizer. IEEE Trans Circuits Syst II Express Briefs 53(3):240–244CrossRef
40.
go back to reference Zeiler M, Fergus R (2014) Visualizing and understanding convolutional networks. In: European conference on computer vision, pp 818–833 Zeiler M, Fergus R (2014) Visualizing and understanding convolutional networks. In: European conference on computer vision, pp 818–833
41.
go back to reference Zjavka L, Pedrycz W (2016) Constructing general partial differential equations using polynomial and neural networks. Neural Netw 73:58–69CrossRef Zjavka L, Pedrycz W (2016) Constructing general partial differential equations using polynomial and neural networks. Neural Netw 73:58–69CrossRef
Metadata
Title
Polynomial dendritic neural networks
Authors
Yuwen Chen
Jiang Liu
Publication date
22-02-2022
Publisher
Springer London
Published in
Neural Computing and Applications / Issue 14/2022
Print ISSN: 0941-0643
Electronic ISSN: 1433-3058
DOI
https://doi.org/10.1007/s00521-022-07044-4

Other articles of this Issue 14/2022

Neural Computing and Applications 14/2022 Go to the issue

Premium Partner