Skip to main content
Top
Published in: Journal of Scientific Computing 3/2019

11-10-2018

Positivity-Preserving Time Discretizations for Production–Destruction Equations with Applications to Non-equilibrium Flows

Authors: Juntao Huang, Chi-Wang Shu

Published in: Journal of Scientific Computing | Issue 3/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this paper, we construct a family of modified Patankar Runge–Kutta methods, which is conservative and unconditionally positivity-preserving, for production–destruction equations, and derive necessary and sufficient conditions to obtain second-order accuracy. This ordinary differential equation solver is then extended to solve a class of semi-discrete schemes for PDEs. Combining this time integration method with the positivity-preserving finite difference weighted essentially non-oscillatory (WENO) schemes, we successfully obtain a positivity-preserving WENO scheme for non-equilibrium flows. Various numerical tests are reported to demonstrate the effectiveness of the methods.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Burchard, H., Deleersnijder, E., Meister, A.: A high-order conservative Patankar-type discretisation for stiff systems of production-destruction equations. Appl. Numer. Math. 47(1), 1–30 (2003)MathSciNetCrossRefMATH Burchard, H., Deleersnijder, E., Meister, A.: A high-order conservative Patankar-type discretisation for stiff systems of production-destruction equations. Appl. Numer. Math. 47(1), 1–30 (2003)MathSciNetCrossRefMATH
2.
go back to reference Chertock, A., Cui, S., Kurganov, A., Wu, T.: Steady state and sign preserving semi-implicit Runge–Kutta methods for ODEs with stiff damping term. SIAM J. Numer. Anal. 53(4), 2008–2029 (2015)MathSciNetCrossRefMATH Chertock, A., Cui, S., Kurganov, A., Wu, T.: Steady state and sign preserving semi-implicit Runge–Kutta methods for ODEs with stiff damping term. SIAM J. Numer. Anal. 53(4), 2008–2029 (2015)MathSciNetCrossRefMATH
3.
go back to reference Chertock, A., Cui, S., Kurganov, A., Wu, T.: Well-balanced positivity preserving central-upwind scheme for the shallow water system with friction terms. Int. J. Numer. Methods Fluids 78(6), 355–383 (2015)MathSciNetCrossRef Chertock, A., Cui, S., Kurganov, A., Wu, T.: Well-balanced positivity preserving central-upwind scheme for the shallow water system with friction terms. Int. J. Numer. Methods Fluids 78(6), 355–383 (2015)MathSciNetCrossRef
4.
go back to reference Formaggia, L., Scotti, A.: Positivity and conservation properties of some integration schemes for mass action kinetics. SIAM J. Numer. Anal. 49(3), 1267–1288 (2011)MathSciNetCrossRefMATH Formaggia, L., Scotti, A.: Positivity and conservation properties of some integration schemes for mass action kinetics. SIAM J. Numer. Anal. 49(3), 1267–1288 (2011)MathSciNetCrossRefMATH
5.
go back to reference Gottlieb, S., Shu, C.-W., Tadmor, E.: Strong stability-preserving high-order time discretization methods. SIAM Rev. 43(1), 89–112 (2001)MathSciNetCrossRefMATH Gottlieb, S., Shu, C.-W., Tadmor, E.: Strong stability-preserving high-order time discretization methods. SIAM Rev. 43(1), 89–112 (2001)MathSciNetCrossRefMATH
6.
go back to reference Hairer, E., Wanner, G.: Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems. Springer, Heidelberg (1996)CrossRefMATH Hairer, E., Wanner, G.: Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems. Springer, Heidelberg (1996)CrossRefMATH
7.
go back to reference Hu, J., Shu, R., Zhang, X.: Asymptotic-preserving and positivity-preserving implicit–explicit schemes for the stiff BGK equation. SIAM J. Numer. Anal. 56(2), 942–973 (2018)MathSciNetCrossRefMATH Hu, J., Shu, R., Zhang, X.: Asymptotic-preserving and positivity-preserving implicit–explicit schemes for the stiff BGK equation. SIAM J. Numer. Anal. 56(2), 942–973 (2018)MathSciNetCrossRefMATH
8.
go back to reference Huang, J., Shu, C.-W.: A second-order asymptotic-preserving and positivity-preserving discontinuous Galerkin scheme for the Kerr–Debye model. Math. Models Methods Appl. Sci. 27(03), 549–579 (2017)MathSciNetCrossRefMATH Huang, J., Shu, C.-W.: A second-order asymptotic-preserving and positivity-preserving discontinuous Galerkin scheme for the Kerr–Debye model. Math. Models Methods Appl. Sci. 27(03), 549–579 (2017)MathSciNetCrossRefMATH
9.
go back to reference Huang, J., Shu, C.-W.: Bound-preserving modified exponential Runge–Kutta discontinuous Galerkin methods for scalar hyperbolic equations with stiff source terms. J. Comput. Phys. 361, 111–135 (2018)MathSciNetCrossRefMATH Huang, J., Shu, C.-W.: Bound-preserving modified exponential Runge–Kutta discontinuous Galerkin methods for scalar hyperbolic equations with stiff source terms. J. Comput. Phys. 361, 111–135 (2018)MathSciNetCrossRefMATH
10.
go back to reference Kopecz, S., Meister, A.: On order conditions for modified Patankar–Runge–Kutta schemes. Appl. Numer. Math. 123, 159–179 (2018)MathSciNetCrossRefMATH Kopecz, S., Meister, A.: On order conditions for modified Patankar–Runge–Kutta schemes. Appl. Numer. Math. 123, 159–179 (2018)MathSciNetCrossRefMATH
12.
13.
go back to reference Meister, A., Ortleb, S.: On unconditionally positive implicit time integration for the DG scheme applied to shallow water flows. Int. J. Numer. Methods Fluids 76(2), 69–94 (2014)MathSciNetCrossRef Meister, A., Ortleb, S.: On unconditionally positive implicit time integration for the DG scheme applied to shallow water flows. Int. J. Numer. Methods Fluids 76(2), 69–94 (2014)MathSciNetCrossRef
14.
go back to reference Patankar, S.: Numerical Heat Transfer and Fluid Flow. CRC Press, London (1980)MATH Patankar, S.: Numerical Heat Transfer and Fluid Flow. CRC Press, London (1980)MATH
15.
go back to reference Shu, C.-W.: Essentially Non-oscillatory and Weighted Essentially Non-oscillatory Schemes for Hyperbolic Conservation Laws, pp. 325–432. Springer, Berlin (1998)MATH Shu, C.-W.: Essentially Non-oscillatory and Weighted Essentially Non-oscillatory Schemes for Hyperbolic Conservation Laws, pp. 325–432. Springer, Berlin (1998)MATH
16.
go back to reference Shu, C.-W., Osher, S.: Efficient implementation of essentially non-oscillatory shock-capturing schemes. J. Comput. Phys. 77(2), 439–471 (1989)CrossRefMATH Shu, C.-W., Osher, S.: Efficient implementation of essentially non-oscillatory shock-capturing schemes. J. Comput. Phys. 77(2), 439–471 (1989)CrossRefMATH
18.
go back to reference Wang, C., Zhang, X., Shu, C.-W., Ning, J.: Robust high order discontinuous Galerkin schemes for two-dimensional gaseous detonations. J. Comput. Phys. 231(2), 653–665 (2012)MathSciNetCrossRefMATH Wang, C., Zhang, X., Shu, C.-W., Ning, J.: Robust high order discontinuous Galerkin schemes for two-dimensional gaseous detonations. J. Comput. Phys. 231(2), 653–665 (2012)MathSciNetCrossRefMATH
19.
20.
go back to reference Wang, W., Shu, C.-W., Yee, H., Sjögreen, B.: High-order well-balanced schemes and applications to non-equilibrium flow. J. Comput. Phys. 228(18), 6682–6702 (2009)MathSciNetCrossRefMATH Wang, W., Shu, C.-W., Yee, H., Sjögreen, B.: High-order well-balanced schemes and applications to non-equilibrium flow. J. Comput. Phys. 228(18), 6682–6702 (2009)MathSciNetCrossRefMATH
21.
go back to reference Xing, Y., Zhang, X.: Positivity-preserving well-balanced discontinuous Galerkin methods for the shallow water equations on unstructured triangular meshes. J. Sci. Comput. 57(1), 19–41 (2013)MathSciNetCrossRefMATH Xing, Y., Zhang, X.: Positivity-preserving well-balanced discontinuous Galerkin methods for the shallow water equations on unstructured triangular meshes. J. Sci. Comput. 57(1), 19–41 (2013)MathSciNetCrossRefMATH
22.
go back to reference Xing, Y., Zhang, X., Shu, C.-W.: Positivity-preserving high order well-balanced discontinuous Galerkin methods for the shallow water equations. Adv. Water Resour. 33(12), 1476–1493 (2010)CrossRef Xing, Y., Zhang, X., Shu, C.-W.: Positivity-preserving high order well-balanced discontinuous Galerkin methods for the shallow water equations. Adv. Water Resour. 33(12), 1476–1493 (2010)CrossRef
23.
go back to reference Zhang, X.: On positivity-preserving high order discontinuous Galerkin schemes for compressible navier-stokes equations. J. Comput. Phys. 328, 301–343 (2017)MathSciNetCrossRefMATH Zhang, X.: On positivity-preserving high order discontinuous Galerkin schemes for compressible navier-stokes equations. J. Comput. Phys. 328, 301–343 (2017)MathSciNetCrossRefMATH
24.
go back to reference Zhang, X., Shu, C.-W.: On maximum-principle-satisfying high order schemes for scalar conservation laws. J. Comput. Phys. 229(9), 3091–3120 (2010)MathSciNetCrossRefMATH Zhang, X., Shu, C.-W.: On maximum-principle-satisfying high order schemes for scalar conservation laws. J. Comput. Phys. 229(9), 3091–3120 (2010)MathSciNetCrossRefMATH
25.
go back to reference Zhang, X., Shu, C.-W.: On positivity-preserving high order discontinuous Galerkin schemes for compressible Euler equations on rectangular meshes. J. Comput. Phys. 229(23), 8918–8934 (2010)MathSciNetCrossRefMATH Zhang, X., Shu, C.-W.: On positivity-preserving high order discontinuous Galerkin schemes for compressible Euler equations on rectangular meshes. J. Comput. Phys. 229(23), 8918–8934 (2010)MathSciNetCrossRefMATH
26.
go back to reference Zhang, X., Shu, C.-W.: Positivity-preserving high order discontinuous Galerkin schemes for compressible Euler equations with source terms. J. Comput. Phys. 230(4), 1238–1248 (2011)MathSciNetCrossRefMATH Zhang, X., Shu, C.-W.: Positivity-preserving high order discontinuous Galerkin schemes for compressible Euler equations with source terms. J. Comput. Phys. 230(4), 1238–1248 (2011)MathSciNetCrossRefMATH
27.
go back to reference Zhang, X., Shu, C.-W.: Positivity-preserving high order finite difference WENO schemes for compressible Euler equations. J. Comput. Phys. 231(5), 2245–2258 (2012)MathSciNetCrossRefMATH Zhang, X., Shu, C.-W.: Positivity-preserving high order finite difference WENO schemes for compressible Euler equations. J. Comput. Phys. 231(5), 2245–2258 (2012)MathSciNetCrossRefMATH
28.
go back to reference Zhang, Y., Zhang, X., Shu, C.-W.: Maximum-principle-satisfying second order discontinuous Galerkin schemes for convection–diffusion equations on triangular meshes. J. Comput. Phys. 234, 295–316 (2013)MathSciNetCrossRefMATH Zhang, Y., Zhang, X., Shu, C.-W.: Maximum-principle-satisfying second order discontinuous Galerkin schemes for convection–diffusion equations on triangular meshes. J. Comput. Phys. 234, 295–316 (2013)MathSciNetCrossRefMATH
Metadata
Title
Positivity-Preserving Time Discretizations for Production–Destruction Equations with Applications to Non-equilibrium Flows
Authors
Juntao Huang
Chi-Wang Shu
Publication date
11-10-2018
Publisher
Springer US
Published in
Journal of Scientific Computing / Issue 3/2019
Print ISSN: 0885-7474
Electronic ISSN: 1573-7691
DOI
https://doi.org/10.1007/s10915-018-0852-1

Other articles of this Issue 3/2019

Journal of Scientific Computing 3/2019 Go to the issue

Premium Partner