Skip to main content
Top
Published in: Calcolo 2/2023

01-06-2023

Positivity preserving truncated scheme for the stochastic Lotka–Volterra model with small moment convergence

Authors: Yongmei Cai, Qian Guo, Xuerong Mao

Published in: Calcolo | Issue 2/2023

Login to get access

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This work concerns with the numerical approximation for the stochastic Lotka–Volterra model originally studied by Mao et al. (Stoch Process Appl 97(1):95–110, 2002). The natures of the model including multi-dimension, super-linearity of both the drift and diffusion coefficients and the positivity of the solution make most of the existing numerical methods fail. In particular, the super-linearity of the diffusion coefficient results in the explosion of the 1st moment of the analytical solution at a finite time. This becomes one of our main technical challenges. As a result, the convergence framework is to be set up under the \(\theta \)th moment with \(0<\theta <1\). The idea developed in this paper will not only be able to cope with the stochastic Lotka–Volterra model but also work for a large class of multi-dimensional super-linear SDE models.
Literature
1.
go back to reference Ait-Sahalia, Y.: Testing continuous-time models of the spot interest rate. Rev. Financ. Stud. 9(2), 385–426 (1996)CrossRef Ait-Sahalia, Y.: Testing continuous-time models of the spot interest rate. Rev. Financ. Stud. 9(2), 385–426 (1996)CrossRef
2.
go back to reference Anderson, D.F., Higham, D.J., Sun, Y.: Multilevel Monte Carlo for stochastic differential equations with small noise. SIAM J. Numer. Anal. 54(2), 505–529 (2016)MathSciNetCrossRefMATH Anderson, D.F., Higham, D.J., Sun, Y.: Multilevel Monte Carlo for stochastic differential equations with small noise. SIAM J. Numer. Anal. 54(2), 505–529 (2016)MathSciNetCrossRefMATH
3.
go back to reference Appleby, J.A.D., Guzowska, M., Kelly, C., Rodkina, A.: Preserving positivity in solutions of discretised stochastic differential equations. Appl. Math. Comput. 217(2), 763–774 (2010)MathSciNetMATH Appleby, J.A.D., Guzowska, M., Kelly, C., Rodkina, A.: Preserving positivity in solutions of discretised stochastic differential equations. Appl. Math. Comput. 217(2), 763–774 (2010)MathSciNetMATH
4.
go back to reference Baduraliya, C.H., Mao, X.: The Euler–Maruyama approximation for the asset price in the mean-reverting-theta stochastic volatility model. Comput. Math. Appl. 64(7), 2209–2223 (2012)MathSciNetCrossRefMATH Baduraliya, C.H., Mao, X.: The Euler–Maruyama approximation for the asset price in the mean-reverting-theta stochastic volatility model. Comput. Math. Appl. 64(7), 2209–2223 (2012)MathSciNetCrossRefMATH
5.
go back to reference Cai, S., Cai, Y., Mao, X.: A stochastic differential equation SIS epidemic model with two independent Brownian motions. J. Math. Anal. Appl. 474(2), 1536–1550 (2019)MathSciNetCrossRefMATH Cai, S., Cai, Y., Mao, X.: A stochastic differential equation SIS epidemic model with two independent Brownian motions. J. Math. Anal. Appl. 474(2), 1536–1550 (2019)MathSciNetCrossRefMATH
6.
go back to reference Cai, Y., Hu, J., Mao, X.: Positivity and boundedness preserving numerical scheme for the stochastic epidemic model with square-root diffusion term. Appl. Numer. Math. 182, 100–116 (2022)MathSciNetCrossRefMATH Cai, Y., Hu, J., Mao, X.: Positivity and boundedness preserving numerical scheme for the stochastic epidemic model with square-root diffusion term. Appl. Numer. Math. 182, 100–116 (2022)MathSciNetCrossRefMATH
7.
go back to reference Chan, K.C., Karolyi, G.A., Longstaff, F.A., Sanders, A.B.: An empirical comparison of alternative models of the short-term interest rate. J. Financ. 47(3), 1209–1227 (1992)CrossRef Chan, K.C., Karolyi, G.A., Longstaff, F.A., Sanders, A.B.: An empirical comparison of alternative models of the short-term interest rate. J. Financ. 47(3), 1209–1227 (1992)CrossRef
8.
go back to reference Hutzenthaler, M., Jentzen, A., Kloeden, P.E.: Strong and weak divergence in finite time of Euler’s method for stochastic differential equations with non-globally Lipschitz continuous coefficients. Proc. R. Soc. A Math. Phys. Eng. Sci. 467(2130), 1563–1576 (2011)MathSciNetMATH Hutzenthaler, M., Jentzen, A., Kloeden, P.E.: Strong and weak divergence in finite time of Euler’s method for stochastic differential equations with non-globally Lipschitz continuous coefficients. Proc. R. Soc. A Math. Phys. Eng. Sci. 467(2130), 1563–1576 (2011)MathSciNetMATH
9.
go back to reference Hutzenthaler, M., Jentzen, A., Kloeden, P.E.: Strong convergence of an explicit numerical method for SDEs with nonglobally Lipschitz continuous coefficients. Ann. Appl. Probab. 22(4), 1611–1641 (2012)MathSciNetCrossRefMATH Hutzenthaler, M., Jentzen, A., Kloeden, P.E.: Strong convergence of an explicit numerical method for SDEs with nonglobally Lipschitz continuous coefficients. Ann. Appl. Probab. 22(4), 1611–1641 (2012)MathSciNetCrossRefMATH
10.
go back to reference Kelly, C., Lord, G.J.: Adaptive time-stepping strategies for nonlinear stochastic systems. IMA J. Numer. Anal. 38(3), 1523–1549 (2018)MathSciNetCrossRefMATH Kelly, C., Lord, G.J.: Adaptive time-stepping strategies for nonlinear stochastic systems. IMA J. Numer. Anal. 38(3), 1523–1549 (2018)MathSciNetCrossRefMATH
11.
go back to reference Kloeden, P.E., Platen, E.: Numerical Solution of Stochastic Differential Equations. Springer, Berlin (1992)CrossRefMATH Kloeden, P.E., Platen, E.: Numerical Solution of Stochastic Differential Equations. Springer, Berlin (1992)CrossRefMATH
12.
go back to reference Lewis, A.L.: Option Valuation Under Stochastic Volatility. Finance Press (2000) Lewis, A.L.: Option Valuation Under Stochastic Volatility. Finance Press (2000)
13.
go back to reference Li, L., Taguchi, D.: On a positivity preserving numerical scheme for jump-extended CIR process: the alpha-stable case. BIT Numer. Math. 59(3), 747–774 (2019)MathSciNetCrossRefMATH Li, L., Taguchi, D.: On a positivity preserving numerical scheme for jump-extended CIR process: the alpha-stable case. BIT Numer. Math. 59(3), 747–774 (2019)MathSciNetCrossRefMATH
14.
go back to reference Li, X., Mao, X., Yin, G.: Explicit numerical approximations for stochastic differential equations in finite and infinite horizons: truncation methods, convergence in pth moment and stability. IMA J. Numer. Anal. 39(2), 847–892 (2019)MathSciNetCrossRefMATH Li, X., Mao, X., Yin, G.: Explicit numerical approximations for stochastic differential equations in finite and infinite horizons: truncation methods, convergence in pth moment and stability. IMA J. Numer. Anal. 39(2), 847–892 (2019)MathSciNetCrossRefMATH
15.
go back to reference Mao, X.: Stochastic Differential Equations and Applications. Elsevier, Horwood (2007)MATH Mao, X.: Stochastic Differential Equations and Applications. Elsevier, Horwood (2007)MATH
16.
17.
go back to reference Mao, X., Marion, G., Renshaw, E.: Environmental Brownian noise suppresses explosions in population dynamics. Stoch. Process. Appl. 97(1), 95–110 (2002)MathSciNetCrossRefMATH Mao, X., Marion, G., Renshaw, E.: Environmental Brownian noise suppresses explosions in population dynamics. Stoch. Process. Appl. 97(1), 95–110 (2002)MathSciNetCrossRefMATH
18.
go back to reference Mao, X., Wei, F., Wiriyakraikul, T.: Positivity preserving truncated Euler-Maruyama Method for stochastic Lotka–Volterra competition model. J. Comput. Appl. Math. 394, 113566 (2021)MathSciNetCrossRefMATH Mao, X., Wei, F., Wiriyakraikul, T.: Positivity preserving truncated Euler-Maruyama Method for stochastic Lotka–Volterra competition model. J. Comput. Appl. Math. 394, 113566 (2021)MathSciNetCrossRefMATH
19.
go back to reference Tretyakov, M.V., Zhang, Z.: A fundamental mean-square convergence theorem for SDEs with locally Lipschitz coefficients and its applications. SIAM J. Numer. Anal. 51(6), 3135–3162 (2013)MathSciNetCrossRefMATH Tretyakov, M.V., Zhang, Z.: A fundamental mean-square convergence theorem for SDEs with locally Lipschitz coefficients and its applications. SIAM J. Numer. Anal. 51(6), 3135–3162 (2013)MathSciNetCrossRefMATH
20.
go back to reference Wang, X., Gan, S.: The tamed Milstein method for commutative stochastic differential equations with non-globally Lipschitz continuous coefficients. J. Differ. Equ. Appl. 19(3), 466–490 (2013)MathSciNetCrossRefMATH Wang, X., Gan, S.: The tamed Milstein method for commutative stochastic differential equations with non-globally Lipschitz continuous coefficients. J. Differ. Equ. Appl. 19(3), 466–490 (2013)MathSciNetCrossRefMATH
21.
go back to reference Wang, X., Wu, J., Dong, B.: Mean-square convergence rates of stochastic theta methods for sdes under a coupled monotonicity condition. BIT Numer. Math. 60(3), 759–90 (2020)MathSciNetCrossRefMATH Wang, X., Wu, J., Dong, B.: Mean-square convergence rates of stochastic theta methods for sdes under a coupled monotonicity condition. BIT Numer. Math. 60(3), 759–90 (2020)MathSciNetCrossRefMATH
Metadata
Title
Positivity preserving truncated scheme for the stochastic Lotka–Volterra model with small moment convergence
Authors
Yongmei Cai
Qian Guo
Xuerong Mao
Publication date
01-06-2023
Publisher
Springer International Publishing
Published in
Calcolo / Issue 2/2023
Print ISSN: 0008-0624
Electronic ISSN: 1126-5434
DOI
https://doi.org/10.1007/s10092-023-00521-9

Other articles of this Issue 2/2023

Calcolo 2/2023 Go to the issue

Premium Partner