Skip to main content
Top
Published in: Calcolo 2/2023

01-06-2023

Spectral approximation methods for nonlinear integral equations with non-smooth kernels

Authors: C. Allouch, D. Sbibih, M. Tahrichi

Published in: Calcolo | Issue 2/2023

Login to get access

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this paper, polynomially based projection and modified projection methods for approximating the solution of Uryshon integral equations with a kernel of Green’s function type are proposed. The projection is either an orthogonal projection or an interpolatory projection using Legendre polynomial basis. The orders of convergence of these methods and the superconvergence of their iterated versions are analyzed. A numerical example is given to illustrate the theoretical results.
Literature
1.
go back to reference Ahues, M., Largillier, A., Limaye, B.: Spectral Computations for Bounded Operators. CRC Press, Boca Raton (2001)CrossRefMATH Ahues, M., Largillier, A., Limaye, B.: Spectral Computations for Bounded Operators. CRC Press, Boca Raton (2001)CrossRefMATH
2.
go back to reference Allouch, C., Sbibih, D., Tahrichi, M.: Legendre superconvergent Galerkin-collocation type methods for Hammerstein equations. J. Comp. Appl. Math. 353, 253–264 (2018)MathSciNetCrossRefMATH Allouch, C., Sbibih, D., Tahrichi, M.: Legendre superconvergent Galerkin-collocation type methods for Hammerstein equations. J. Comp. Appl. Math. 353, 253–264 (2018)MathSciNetCrossRefMATH
3.
go back to reference Allouch, C., Sbibih, D., Tahrichi, M.: Superconvergent projection methods for Hammestein integral equations. J. Int. Equ. Appl. 31(1), 1–28 (2019)MATH Allouch, C., Sbibih, D., Tahrichi, M.: Superconvergent projection methods for Hammestein integral equations. J. Int. Equ. Appl. 31(1), 1–28 (2019)MATH
4.
go back to reference Atkinson, K., Potra, F.: Projection and iterated projection methods for nonlinear integral equations. SIAM J. Numer. Anal. 24, 1352–1373 (1987)MathSciNetCrossRefMATH Atkinson, K., Potra, F.: Projection and iterated projection methods for nonlinear integral equations. SIAM J. Numer. Anal. 24, 1352–1373 (1987)MathSciNetCrossRefMATH
5.
go back to reference Atkinson, K., Potra, F.: The discrete Galerkin method for nonlinear integral equations. J. Int. Equ. Appl. 1(1), 17–54 (1988)MathSciNetMATH Atkinson, K., Potra, F.: The discrete Galerkin method for nonlinear integral equations. J. Int. Equ. Appl. 1(1), 17–54 (1988)MathSciNetMATH
6.
go back to reference Chatelin, F., Lebbar, R.: Superconvergence results for the iterated projection method applied to a Fredholm integral equation of the second kind and the corresponding eigenvalue problem. J. Int. Equ. Appl. 6, 71–91 (1984)MathSciNetMATH Chatelin, F., Lebbar, R.: Superconvergence results for the iterated projection method applied to a Fredholm integral equation of the second kind and the corresponding eigenvalue problem. J. Int. Equ. Appl. 6, 71–91 (1984)MathSciNetMATH
7.
go back to reference Das, P., Nelakanti, G.: Error analysis of discrete legendre multi-projection methods for nonlinear Fredholm integral equations. Numer. Funct. Anal. Optim. 38(6), 1–26 (2017)MathSciNetMATH Das, P., Nelakanti, G.: Error analysis of discrete legendre multi-projection methods for nonlinear Fredholm integral equations. Numer. Funct. Anal. Optim. 38(6), 1–26 (2017)MathSciNetMATH
8.
go back to reference Das, P., Sahani, M., Nelakanti, G.: Legendre spectral projection methods for Urysohn integral equations. J. Comp. Appl. Math. 263, 88–102 (2014)MathSciNetCrossRefMATH Das, P., Sahani, M., Nelakanti, G.: Legendre spectral projection methods for Urysohn integral equations. J. Comp. Appl. Math. 263, 88–102 (2014)MathSciNetCrossRefMATH
9.
go back to reference Das, P., Sahani, M., Nelakanti, G., Long, G.: Legendre spectral projection methods for Fredholm–Hammerstein integral equations. J. Sci. Comput. 68, 213–230 (2016)MathSciNetCrossRefMATH Das, P., Sahani, M., Nelakanti, G., Long, G.: Legendre spectral projection methods for Fredholm–Hammerstein integral equations. J. Sci. Comput. 68, 213–230 (2016)MathSciNetCrossRefMATH
10.
go back to reference Golberg, M.A.: Discrete polynomial-based Galerkin methods for Fredholm integral equations. J. Int. Equ. Appl. 6, 197–211 (1994)MathSciNetMATH Golberg, M.A.: Discrete polynomial-based Galerkin methods for Fredholm integral equations. J. Int. Equ. Appl. 6, 197–211 (1994)MathSciNetMATH
11.
go back to reference Golberg, M.A., Chen, C.S.: Discrete Projection Methods for Integral Equations. Computational Mechanics Publications, Boston (1997)MATH Golberg, M.A., Chen, C.S.: Discrete Projection Methods for Integral Equations. Computational Mechanics Publications, Boston (1997)MATH
12.
go back to reference Grammont, L., Kulkarni, R.P., Vasconcelos, P.B.: Modified projection and the iterated modified projection methods Afor nonlinear integral equations. J. Int. Equ. Appl. 25(4) (2013) Grammont, L., Kulkarni, R.P., Vasconcelos, P.B.: Modified projection and the iterated modified projection methods Afor nonlinear integral equations. J. Int. Equ. Appl. 25(4) (2013)
13.
go back to reference Grammont, L., Kulkarni, R.P., Nidhin, T.J.: Modified projection method for Urysohn integral equations with non-smooth kernels. J. Comp. Appl. Math. 294, 309–322 (2016)MathSciNetCrossRefMATH Grammont, L., Kulkarni, R.P., Nidhin, T.J.: Modified projection method for Urysohn integral equations with non-smooth kernels. J. Comp. Appl. Math. 294, 309–322 (2016)MathSciNetCrossRefMATH
14.
go back to reference Kulkarni, R.P., Nidhin, T.J.: Approximate solution of Uryshon integral equations with non-smooth kernels. J. Int. Equ. Appl. 28(2), 221–261 (2016)MATH Kulkarni, R.P., Nidhin, T.J.: Approximate solution of Uryshon integral equations with non-smooth kernels. J. Int. Equ. Appl. 28(2), 221–261 (2016)MATH
15.
go back to reference Kulkarni, R.P., Rakshit, G.: Discrete modified projection methods for Urysohn integral equations with Green’s function type kernels. Math. Model. Anal. 25(3), 421–440 (2020)MathSciNetCrossRefMATH Kulkarni, R.P., Rakshit, G.: Discrete modified projection methods for Urysohn integral equations with Green’s function type kernels. Math. Model. Anal. 25(3), 421–440 (2020)MathSciNetCrossRefMATH
16.
17.
go back to reference Kumar, S.: The numerical solution of Hammestein equations by a method based on polynomial collocation. J. Austral. Math. Soc. Ser. B 31, 319–329 (1990)MathSciNetCrossRef Kumar, S.: The numerical solution of Hammestein equations by a method based on polynomial collocation. J. Austral. Math. Soc. Ser. B 31, 319–329 (1990)MathSciNetCrossRef
19.
go back to reference Mandal, M., Nelakanti, G.: Superconvergence of Legendre spectral projection methods for Fredholm–Hammerstein integral equations. J. Comp. Appl. Math. 319, 423–439 (2017)MathSciNetCrossRefMATH Mandal, M., Nelakanti, G.: Superconvergence of Legendre spectral projection methods for Fredholm–Hammerstein integral equations. J. Comp. Appl. Math. 319, 423–439 (2017)MathSciNetCrossRefMATH
20.
go back to reference Mandal, M., Nelakanti, G.: Superconvergence results of Legendre spectral projection methods for weakly singular Fredholm–Hammerstein integral equations. J. Comp. Appl. Math. 349, 114–131 (2019)MathSciNetCrossRefMATH Mandal, M., Nelakanti, G.: Superconvergence results of Legendre spectral projection methods for weakly singular Fredholm–Hammerstein integral equations. J. Comp. Appl. Math. 349, 114–131 (2019)MathSciNetCrossRefMATH
21.
go back to reference Panigrahi, B.L.: Error analysis of Jacobi spectral collocation methods for Fredholm–Hammerstein integral equations with weakly singular kernel. Int. J. Comput. Math. 96, 1230–1253 (2019)MathSciNetCrossRefMATH Panigrahi, B.L.: Error analysis of Jacobi spectral collocation methods for Fredholm–Hammerstein integral equations with weakly singular kernel. Int. J. Comput. Math. 96, 1230–1253 (2019)MathSciNetCrossRefMATH
23.
go back to reference Riesz, F., Nagy, B.S.: Functional Analysis. Frederick Ungar Pub, New York (1955)MATH Riesz, F., Nagy, B.S.: Functional Analysis. Frederick Ungar Pub, New York (1955)MATH
24.
go back to reference Schock, E.: Galerkin-like methods for equations of the second kind. J. Int. Equ. Appl. 4, 361–364 (1982)MathSciNetMATH Schock, E.: Galerkin-like methods for equations of the second kind. J. Int. Equ. Appl. 4, 361–364 (1982)MathSciNetMATH
25.
go back to reference Schumaker, L.L.: Spline Functions: Basic Theory. John Wiley & Sons, New York (1981)MATH Schumaker, L.L.: Spline Functions: Basic Theory. John Wiley & Sons, New York (1981)MATH
27.
28.
go back to reference Tang, T., Xu, X., Cheng, J.: On spectral methods for Volterra type integral equations and the convergence analysis. J. Comput. Math. 26(6), 825–837 (2008)MathSciNetMATH Tang, T., Xu, X., Cheng, J.: On spectral methods for Volterra type integral equations and the convergence analysis. J. Comput. Math. 26(6), 825–837 (2008)MathSciNetMATH
Metadata
Title
Spectral approximation methods for nonlinear integral equations with non-smooth kernels
Authors
C. Allouch
D. Sbibih
M. Tahrichi
Publication date
01-06-2023
Publisher
Springer International Publishing
Published in
Calcolo / Issue 2/2023
Print ISSN: 0008-0624
Electronic ISSN: 1126-5434
DOI
https://doi.org/10.1007/s10092-023-00519-3

Other articles of this Issue 2/2023

Calcolo 2/2023 Go to the issue

Premium Partner