Skip to main content
Erschienen in: Calcolo 2/2023

01.06.2023

Spectral approximation methods for nonlinear integral equations with non-smooth kernels

verfasst von: C. Allouch, D. Sbibih, M. Tahrichi

Erschienen in: Calcolo | Ausgabe 2/2023

Einloggen, um Zugang zu erhalten

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper, polynomially based projection and modified projection methods for approximating the solution of Uryshon integral equations with a kernel of Green’s function type are proposed. The projection is either an orthogonal projection or an interpolatory projection using Legendre polynomial basis. The orders of convergence of these methods and the superconvergence of their iterated versions are analyzed. A numerical example is given to illustrate the theoretical results.
Literatur
1.
Zurück zum Zitat Ahues, M., Largillier, A., Limaye, B.: Spectral Computations for Bounded Operators. CRC Press, Boca Raton (2001)CrossRefMATH Ahues, M., Largillier, A., Limaye, B.: Spectral Computations for Bounded Operators. CRC Press, Boca Raton (2001)CrossRefMATH
2.
Zurück zum Zitat Allouch, C., Sbibih, D., Tahrichi, M.: Legendre superconvergent Galerkin-collocation type methods for Hammerstein equations. J. Comp. Appl. Math. 353, 253–264 (2018)MathSciNetCrossRefMATH Allouch, C., Sbibih, D., Tahrichi, M.: Legendre superconvergent Galerkin-collocation type methods for Hammerstein equations. J. Comp. Appl. Math. 353, 253–264 (2018)MathSciNetCrossRefMATH
3.
Zurück zum Zitat Allouch, C., Sbibih, D., Tahrichi, M.: Superconvergent projection methods for Hammestein integral equations. J. Int. Equ. Appl. 31(1), 1–28 (2019)MATH Allouch, C., Sbibih, D., Tahrichi, M.: Superconvergent projection methods for Hammestein integral equations. J. Int. Equ. Appl. 31(1), 1–28 (2019)MATH
4.
Zurück zum Zitat Atkinson, K., Potra, F.: Projection and iterated projection methods for nonlinear integral equations. SIAM J. Numer. Anal. 24, 1352–1373 (1987)MathSciNetCrossRefMATH Atkinson, K., Potra, F.: Projection and iterated projection methods for nonlinear integral equations. SIAM J. Numer. Anal. 24, 1352–1373 (1987)MathSciNetCrossRefMATH
5.
Zurück zum Zitat Atkinson, K., Potra, F.: The discrete Galerkin method for nonlinear integral equations. J. Int. Equ. Appl. 1(1), 17–54 (1988)MathSciNetMATH Atkinson, K., Potra, F.: The discrete Galerkin method for nonlinear integral equations. J. Int. Equ. Appl. 1(1), 17–54 (1988)MathSciNetMATH
6.
Zurück zum Zitat Chatelin, F., Lebbar, R.: Superconvergence results for the iterated projection method applied to a Fredholm integral equation of the second kind and the corresponding eigenvalue problem. J. Int. Equ. Appl. 6, 71–91 (1984)MathSciNetMATH Chatelin, F., Lebbar, R.: Superconvergence results for the iterated projection method applied to a Fredholm integral equation of the second kind and the corresponding eigenvalue problem. J. Int. Equ. Appl. 6, 71–91 (1984)MathSciNetMATH
7.
Zurück zum Zitat Das, P., Nelakanti, G.: Error analysis of discrete legendre multi-projection methods for nonlinear Fredholm integral equations. Numer. Funct. Anal. Optim. 38(6), 1–26 (2017)MathSciNetMATH Das, P., Nelakanti, G.: Error analysis of discrete legendre multi-projection methods for nonlinear Fredholm integral equations. Numer. Funct. Anal. Optim. 38(6), 1–26 (2017)MathSciNetMATH
8.
Zurück zum Zitat Das, P., Sahani, M., Nelakanti, G.: Legendre spectral projection methods for Urysohn integral equations. J. Comp. Appl. Math. 263, 88–102 (2014)MathSciNetCrossRefMATH Das, P., Sahani, M., Nelakanti, G.: Legendre spectral projection methods for Urysohn integral equations. J. Comp. Appl. Math. 263, 88–102 (2014)MathSciNetCrossRefMATH
9.
Zurück zum Zitat Das, P., Sahani, M., Nelakanti, G., Long, G.: Legendre spectral projection methods for Fredholm–Hammerstein integral equations. J. Sci. Comput. 68, 213–230 (2016)MathSciNetCrossRefMATH Das, P., Sahani, M., Nelakanti, G., Long, G.: Legendre spectral projection methods for Fredholm–Hammerstein integral equations. J. Sci. Comput. 68, 213–230 (2016)MathSciNetCrossRefMATH
10.
Zurück zum Zitat Golberg, M.A.: Discrete polynomial-based Galerkin methods for Fredholm integral equations. J. Int. Equ. Appl. 6, 197–211 (1994)MathSciNetMATH Golberg, M.A.: Discrete polynomial-based Galerkin methods for Fredholm integral equations. J. Int. Equ. Appl. 6, 197–211 (1994)MathSciNetMATH
11.
Zurück zum Zitat Golberg, M.A., Chen, C.S.: Discrete Projection Methods for Integral Equations. Computational Mechanics Publications, Boston (1997)MATH Golberg, M.A., Chen, C.S.: Discrete Projection Methods for Integral Equations. Computational Mechanics Publications, Boston (1997)MATH
12.
Zurück zum Zitat Grammont, L., Kulkarni, R.P., Vasconcelos, P.B.: Modified projection and the iterated modified projection methods Afor nonlinear integral equations. J. Int. Equ. Appl. 25(4) (2013) Grammont, L., Kulkarni, R.P., Vasconcelos, P.B.: Modified projection and the iterated modified projection methods Afor nonlinear integral equations. J. Int. Equ. Appl. 25(4) (2013)
13.
Zurück zum Zitat Grammont, L., Kulkarni, R.P., Nidhin, T.J.: Modified projection method for Urysohn integral equations with non-smooth kernels. J. Comp. Appl. Math. 294, 309–322 (2016)MathSciNetCrossRefMATH Grammont, L., Kulkarni, R.P., Nidhin, T.J.: Modified projection method for Urysohn integral equations with non-smooth kernels. J. Comp. Appl. Math. 294, 309–322 (2016)MathSciNetCrossRefMATH
14.
Zurück zum Zitat Kulkarni, R.P., Nidhin, T.J.: Approximate solution of Uryshon integral equations with non-smooth kernels. J. Int. Equ. Appl. 28(2), 221–261 (2016)MATH Kulkarni, R.P., Nidhin, T.J.: Approximate solution of Uryshon integral equations with non-smooth kernels. J. Int. Equ. Appl. 28(2), 221–261 (2016)MATH
15.
Zurück zum Zitat Kulkarni, R.P., Rakshit, G.: Discrete modified projection methods for Urysohn integral equations with Green’s function type kernels. Math. Model. Anal. 25(3), 421–440 (2020)MathSciNetCrossRefMATH Kulkarni, R.P., Rakshit, G.: Discrete modified projection methods for Urysohn integral equations with Green’s function type kernels. Math. Model. Anal. 25(3), 421–440 (2020)MathSciNetCrossRefMATH
16.
17.
Zurück zum Zitat Kumar, S.: The numerical solution of Hammestein equations by a method based on polynomial collocation. J. Austral. Math. Soc. Ser. B 31, 319–329 (1990)MathSciNetCrossRef Kumar, S.: The numerical solution of Hammestein equations by a method based on polynomial collocation. J. Austral. Math. Soc. Ser. B 31, 319–329 (1990)MathSciNetCrossRef
18.
19.
Zurück zum Zitat Mandal, M., Nelakanti, G.: Superconvergence of Legendre spectral projection methods for Fredholm–Hammerstein integral equations. J. Comp. Appl. Math. 319, 423–439 (2017)MathSciNetCrossRefMATH Mandal, M., Nelakanti, G.: Superconvergence of Legendre spectral projection methods for Fredholm–Hammerstein integral equations. J. Comp. Appl. Math. 319, 423–439 (2017)MathSciNetCrossRefMATH
20.
Zurück zum Zitat Mandal, M., Nelakanti, G.: Superconvergence results of Legendre spectral projection methods for weakly singular Fredholm–Hammerstein integral equations. J. Comp. Appl. Math. 349, 114–131 (2019)MathSciNetCrossRefMATH Mandal, M., Nelakanti, G.: Superconvergence results of Legendre spectral projection methods for weakly singular Fredholm–Hammerstein integral equations. J. Comp. Appl. Math. 349, 114–131 (2019)MathSciNetCrossRefMATH
21.
Zurück zum Zitat Panigrahi, B.L.: Error analysis of Jacobi spectral collocation methods for Fredholm–Hammerstein integral equations with weakly singular kernel. Int. J. Comput. Math. 96, 1230–1253 (2019)MathSciNetCrossRefMATH Panigrahi, B.L.: Error analysis of Jacobi spectral collocation methods for Fredholm–Hammerstein integral equations with weakly singular kernel. Int. J. Comput. Math. 96, 1230–1253 (2019)MathSciNetCrossRefMATH
23.
Zurück zum Zitat Riesz, F., Nagy, B.S.: Functional Analysis. Frederick Ungar Pub, New York (1955)MATH Riesz, F., Nagy, B.S.: Functional Analysis. Frederick Ungar Pub, New York (1955)MATH
24.
Zurück zum Zitat Schock, E.: Galerkin-like methods for equations of the second kind. J. Int. Equ. Appl. 4, 361–364 (1982)MathSciNetMATH Schock, E.: Galerkin-like methods for equations of the second kind. J. Int. Equ. Appl. 4, 361–364 (1982)MathSciNetMATH
25.
Zurück zum Zitat Schumaker, L.L.: Spline Functions: Basic Theory. John Wiley & Sons, New York (1981)MATH Schumaker, L.L.: Spline Functions: Basic Theory. John Wiley & Sons, New York (1981)MATH
27.
Zurück zum Zitat Sloan, I.: Four variants of the Gaterkin method for Integral equations of the second kind. IMA J. Numer. Anal. 4, 9–17 (1984)MathSciNetCrossRefMATH Sloan, I.: Four variants of the Gaterkin method for Integral equations of the second kind. IMA J. Numer. Anal. 4, 9–17 (1984)MathSciNetCrossRefMATH
28.
Zurück zum Zitat Tang, T., Xu, X., Cheng, J.: On spectral methods for Volterra type integral equations and the convergence analysis. J. Comput. Math. 26(6), 825–837 (2008)MathSciNetMATH Tang, T., Xu, X., Cheng, J.: On spectral methods for Volterra type integral equations and the convergence analysis. J. Comput. Math. 26(6), 825–837 (2008)MathSciNetMATH
Metadaten
Titel
Spectral approximation methods for nonlinear integral equations with non-smooth kernels
verfasst von
C. Allouch
D. Sbibih
M. Tahrichi
Publikationsdatum
01.06.2023
Verlag
Springer International Publishing
Erschienen in
Calcolo / Ausgabe 2/2023
Print ISSN: 0008-0624
Elektronische ISSN: 1126-5434
DOI
https://doi.org/10.1007/s10092-023-00519-3

Weitere Artikel der Ausgabe 2/2023

Calcolo 2/2023 Zur Ausgabe

Premium Partner